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Foreword

Since the dawn of the iPhone, OpenGL ES has been the de facto graphics standard for
gamers and artists on the iOS platform. Apple’s introduction of Metal with iOS 8 in-
stantly changed that. Metal gives developers the power to create console-level quality
graphics on mobile devices with an order of magnitude improvement in performance
over OpenGL ES. I saw this first-hand as the founder of a mobile gaming video company.
Many of our clients were mobile game developers, and the transition from OpenGL ES to
Metal served to separate mediocre game developers from the cream of the crop. In order
to build standout games, graphics, and art in today’s competitive mobile ecosystem, one
must have a deep understanding of Metal.

Metal By Example is the first book of its kind focused solely on teaching the ins and outs
of Metal. The author takes an example-based pedagogical style that teaches not only the
theory behind Metal’s design, but also how to apply it in practical real-world situations.
Each chapter comes complete with sample code and introduces standard graphics tech-
niques in the context of Metal. Topics include shaders, image processing, environment
mapping, text rendering, and much more.

If you’re an experienced mobile graphics engineer looking to harness the power that
Metal has to offer, Metal By Example is the perfect resource to get you up to speed
quickly.

Kevin Wang
Co-Founder, Kamcord
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Preface

What This Book is About

This book is about Metal, a framework for 3D graphics rendering and data-parallel
computation introduced by Apple in iOS 8. In contrast to preceding application pro-
gramming interfaces (API) for graphics programming on these platforms, Metal offers
unprecedented access to the graphics processing units (GPUs) inside iOS devices. It
achieves this with a slim, elegant interface while incurring minimal CPU overhead. At
the same time, Metal’s low-level nature requires graphics programmers to be more
familiar with topics such as concurrency and memory management in order to create
stable and performant applications.

By exploring Metal with the examples provided in this book, you will learn how to
achieve common tasks in 3D graphics and data-parallel programming, which will enable
you do create applications of your own that take full advantage of the GPU. Metal is
unique in that it is the lowest level of abstraction you can access to do graphics program-
ming on iOS. That is what gives it such power, and what can make it intimidating to
learn. This book exists to help you master Metal and unlock its potential.

Who This Book is For

We will assume you have intermediate experience with Objective-C and some familiarity
with 3D graphics fundamentals. A background in linear algebra and a dash of calculus
will be helpful. Without these foundations, developing an understanding of the topics
covered in this book will be very difficult.

Perhaps the best book on the relevant mathematics is (Lengyel 2011). For a good, suc-
cinct overview of the fundamentals of 3D computer graphics, consult (Gortler 2012). For
deeper coverage of topics in real-time rendering, see (Hughes et al. 2013).

xi



xii Preface

What You’ll Need

To run the sample projects associated with this book on an iOS device, you will need an
Apple computer running OS X Mavericks or newer with Xcode 6.3 or newer and a device
with an A7 processor or newer running iOS 8 or newer. Note that as of this writing, you
cannot run Metal code in the iOS Simulator. You will need physical hardware to run
Metal code for iOS.

Sample Code

The sample code for this book is freely available online at http://metalbyexample.com.
It is licensed under The MIT License, which allows for modification and redistribution
under the condition of acknowledgement of the original authorship.

The sample code is an integral part of reading this book. Many sections in the book refer
the reader to the sample code, and reading and modifying it (or writing your own) is the
only way to build expertise.

Deciding on a license is a difficult matter. Sample code is, in general, not production-
ready, and should not be copied without modification into a product meant for broad
consumption. Even so, we strongly believe that software licenses are not the correct
place to legislate this type of behavior, and chose to be as liberal as reasonable. Caveat
emptor. Please take the sample code as a suggestion rather than a finished product.

Why Not Swift?

For many years, Objective-C has been the language of choice for developing applications
on the Mac and iOS. On the same day that Metal was announced, Apple also introduced
a new programming language named Swift. We chose to write this book using Objective-
C for two reasons.

At the time this project began, Swift was still a new language undergoing substantial
changes. Swift has largely settled down, but its syntax continues to evolve, and it would
have created an undue burden to keep up with the changes to Swift and Metal simultane-
ously.

The other reason to use Objective-C is that many games and game engines are written in
languages derived from C, such as C++, and Objective-C is the closest match for these
languages. Even so, the concepts presented here transfer readily, and Metal bridges
nearly seamless to Swift. Without a doubt, Swift is the language of the future across all
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of Apple’s platforms, but we hope that by writing this book in Objective-C we can be
inclusive to the existing community while not falling too far into the past.
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Chapter 1

Welcome

Welcome to Metal by Example! Throughout this book, we’ll explore the Metal framework,
using it to dive deeply into the worlds of real-time rendering and data-parallel computa-
tion. This chapter sets the stage for the rest of the book.

The purpose of this book is to explain in detail how to achieve common GPU program-
ming tasks in Metal. Although many of the principles discussed here have been in use
for decades, implementing them with a new framework isn’t always easy. That’s espe-
cially true when a new framework, in an effort to be more efficient, takes away many of
the conveniences of higher-level libraries.

As a creator of games or other graphics-intensive apps, you have a lot of choices when it
comes to graphics. You can use Unreal Engine or Unity and get cross-platform support
without ever touching code. You can write SpriteKit or SceneKit code and take advan-
tage of a tower of abstraction that lets you express yourself in terms of scene graphs and
materials. You can write OpenGL or OpenGL ES code that requires you to be a bit more
aware of how the GPU actually does its work. And as of iOS 8, you can dispense with
most of the abstraction and use Metal.

It’s important to realize that although Metal is low-level, it is still a layer of abstraction.
This is a good thing, because without such a layer we would be responsible for knowing
all the minuscule details of GPU programming, which is both a huge amount of knowl-
edge and subject to change as new hardware is released. In fact, Metal itself sits above
the abstraction of the driver architecture that serves as the common base for all graphics
frameworks available on iOS. It is, to use a tired expression, turtles all the way down.

On the other hand, Metal makes the programmer responsible for resource management
and concurrency to a greater extent than ever before. In addition to the various Metal

1



2 Chapter 1. Welcome

classes and protocols, and the new Metal shading language, you have to maintain ex-
plicit control over when you manipulate memory, lest you crash or get undefined re-
sults. The sample code provided with this book provides a gentle introduction not just to
Metal itself, but the low-level programming constructs that are necessary to use it well.

This book breaks down into roughly three sections. In chapters 2 through 4, we intro-
duce Metal and teach you how to get 3D figures animating on the screen. In chapters 5
through 12, we explore the implementation of numerous common techniques such as
model loading, lighting, texturing, cube maps, alpha blending, and text rendering. The
two final chapters are an introduction to data-parallel programming which takes advan-
tage of the GPU to do more generalized computation. At the end, you’ll have the skills
and confidence to use Metal to really unleash your creative potential and unlock the full
power of the GPU.

Let’s get started!



Chapter 2

Setting the Stage and Clearing the
Screen

This chapter covers the bare minimum needed to clear the screen to a solid color in Metal.
Even this simple operation requires many of the concepts exposed by the Metal frame-
work. The following chapters will build upon this material and demonstrate how to do
3D rendering and more.

Creating a New Project

Let’s create a new project in Xcode. We prefer to start with the Single View template, as
it creates a view controller and wires it up to a window for us.

3



4 Chapter 2. Setting the Stage and Clearing the Screen

Figure 2.1: Creating a new single-view project in Xcode

Interfacing with UIKit

Each UIView on iOS uses a Core Animation layer as its backing store. In other words, the
view’s layer holds the actual contents that get drawn on screen. We say that the such a
view is backed by a CALayer instance.

You can tell a UIView to change the type of layer it instantiates as its backing layer by
overriding the +layerClass method on your UIView subclass.

You can follow along in your own project by using the “File • New • File…” menu in
Xcode and generating a new Cocoa Touch class which is a subclass of UIView. We’ll call
it MBEMetalView.
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Figure 2.2: Adding a new UIView subclass in Xcode

CAMetalLayer is provided not by the Metal framework, but by Core Animation.
CAMetalLayer is the glue that binds UIKit and Metal together, and it provides some very
nice features that we’ll be seeing shortly.

Let’s implement +layerClass in our UIView subclass so it knows we want a Metal layer
instead of a stock CALayer. Here’s the complete MBEMetalView implementation as it
stands:

@implementation MBEMetalView

+ (id)layerClass
{

return [CAMetalLayer class];
}

@end

Change the Custom Class of the view in the main storyboard file to MBEMetalView. This
will cause the subclass to be instantiated when the storyboard is loaded. This in turn
gives us a proper Metal layer-backed view.
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Figure 2.3: Setting a custom class for the view controller’s root view

For the sake of convenience, you can add a property to your view class that is of type
CAMetalLayer:

@property (readonly) CAMetalLayer *metalLayer;

This prevents you from having to repeatedly cast from the type of the layer property
(i.e., CALayer) to the actual subclass (CAMetalLayer), since CAMetalLayer offers a few
methods not found on CALayer. You can implement this property as follows:

- (CAMetalLayer *)metalLayer {
return (CAMetalLayer *)self.layer;

}

If you build and run this project on your device, you will see nothing more than a plain
white screen. To actually do any drawing, we need to learn about Metal devices and all
the other objects they help us create. First, a word on the use of protocols in Metal.
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Protocols

A common theme in the Metal API is the use of protocols, rather than concrete classes, to
expose Metal functionality. Many Metal APIs return objects conforming to particular
protocols, with the concrete type being secondary. This has the advantage that you don’t
need to care about the exact class implementing the functionality.

The syntax for declaring an object conforming to protocol MTLDevice will look like this:

id <MTLDevice> device;

Now, let’s look at how to retrieve and use a device.

Devices

A device is an abstraction of the GPU. It provides methods for creating objects like com-
mand queues, render states, and libraries. We’ll look at each of these in turn shortly.

Metal provides a C function, MTLCreateSystemDefaultDevice, that creates and returns
a device that will suit our needs. This function takes no parameters, as there are no de-
vice properties that can be specified.

Our Metal layer needs to know which device will be rendering into it. We also need to
configure a pixel format on the layer so everyone is in agreement about the size and or-
der of its color components. MTLPixelFormatBGRA8Unorm is a good choice. With this
pixel format, each pixel will be comprised of a blue, green, red, and alpha component,
and each component will be an 8-bit unsigned integer (between 0 and 255).

It’s helpful to create a device property on your view subclass, as we will need the device
to create various resources for us in the remainder of the code:

@interface MBEMetalView ()
@property (readonly) id<MTLDevice> device;
@end

Before we can use functions from Metal, we need to import the Metal module with the
following line:

@import Metal;

Here is the complete implementation of -init showing all of the necessary configura-
tion:
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- (instancetype)initWithCoder:(NSCoder *)aDecoder
{

if ((self = [super initWithCoder:aDecoder]))
{

_metalLayer = (CAMetalLayer *)[self layer];
_device = MTLCreateSystemDefaultDevice();
_metalLayer.device = _device;
_metalLayer.pixelFormat = MTLPixelFormatBGRA8Unorm;

}

return self;
}

Note that we override initWithCoder: because we know we’re loading our view from a
storyboard. For completeness, we should also include an override of init so that we can
instantiate this class programmatically.

The redraw method

In the coming chapters, we’ll delegate the responsibility of drawing to a separate class.
For the time being, the -redraw method inside our view class is where we’ll issue draw-
ing commands. Also, we won’t be redrawing the screen repeatedly, just clearing it once
to a solid color. Therefore, it is sufficient to call -redraw just once. We can call it from
our override of the -didMoveToWindow method, since this method will be called once as
the app starts.

- (void)didMoveToWindow
{

[self redraw];
}

The redraw method itself will do all of the work required to clear the screen. All code for
the rest of the chapter is contained in this method.

Textures and Drawables

Textures in Metal are containers for images. You might be used to thinking of a texture
as a single image, but textures in Metal are a little more abstract. Metal also permits a
single texture object to represent an array of images, each of which is called a slice. Each
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image in a texture has a particular size and a pixel format. Textures may be 1D, 2D, or
3D.

We don’t need any of these exotic types of textures for now. Instead, we will be using a
single 2D texture as our renderbuffer (i.e., where the actual pixels get written). This tex-
ture will have the same resolution as the screen of the device our app is running on. We
get a reference to this texture by using one of the features provided by Core Animation:
the CAMetalDrawable protocol.

A drawable is object vended by a Metal layer that can hand us a renderable texture. Each
time we draw, we will ask our Metal layer for a drawable object, from which we can ex-
tract a texture that acts as our framebuffer. The code is very straightforward:

id<CAMetalDrawable> drawable = [self.metalLayer nextDrawable];
id<MTLTexture> texture = drawable.texture;

We will also use the drawable to signal to Core Animation when we’re done rendering
into the texture, so it can be presented on the screen. To actually clear the framebuffer’s
texture, we need to set up a render pass descriptor that describes the actions to take each
frame.

Render Passes

A render pass descriptor tells Metal what actions to take while an image is being rendered.
At the beginning of the render pass, the loadAction determines whether the previous
contents of the texture are cleared or retained. The storeAction determines what
effect the rendering has on the texture: the results may either be stored or discarded.
Since we want our pixels to wind up on the screen, we select our store action to be
MTLStoreActionStore.

The pass descriptor is also where we choose which color the screen will be cleared to
before we draw any geometry. In the case below, we choose an opaque red color (red = 1,
green = 0, blue = 0, alpha = 1).

MTLRenderPassDescriptor *passDescriptor = [MTLRenderPassDescriptor
renderPassDescriptor];

passDescriptor.colorAttachments[0].texture = texture;
passDescriptor.colorAttachments[0].loadAction = MTLLoadActionClear;
passDescriptor.colorAttachments[0].storeAction = MTLStoreActionStore;
passDescriptor.colorAttachments[0].clearColor = MTLClearColorMake(1, 0, 0, 1);

The render pass descriptor will be used below to create a command encoder for perform-
ing render commands. We will sometimes refer to a command encoder itself as a render
pass.
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Queues, Buffers, and Encoders

A command queue is an object that keeps a list of render command buffers to be executed.
We get one by simply asking the device. Typically, a command queue is a long-lived
object, so in more advanced scenarios, we would hold onto the queue we create for more
than one frame.

id<MTLCommandQueue> commandQueue = [self.device newCommandQueue];

A command buffer represents a collection of render commands to be executed as a unit.
Each command buffer is associated with a queue:

id<MTLCommandBuffer> commandBuffer = [commandQueue commandBuffer];

A command encoder is an object that is used to tell Metal what drawing we actually want
to do. It is responsible for translating these high-level commands (set these shader pa-
rameters, draw these triangles, etc.) into low-level instructions that are then written into
its corresponding command buffer. Once we have issued all of our draw calls (which
we will discuss in the next chapter), we send the endEncoding message to the command
encoder so it has the chance to finish its encoding.

id <MTLRenderCommandEncoder> commandEncoder =
[commandBuffer renderCommandEncoderWithDescriptor:passDescriptor];

[commandEncoder endEncoding];

As its last action, the command buffer will signal that its drawable will be ready to be
shown on-screen once all preceding commands are complete. Then, we call commit to
indicate that this command buffer is complete and ready to be placed in command queue
for execution on the GPU. This, in turn, will cause our framebuffer to be filled with our
selected clear color, red.

[commandBuffer presentDrawable:drawable];
[commandBuffer commit];

The Sample App

The sample code for this chapter is in the 02-ClearScreen directory.
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Figure 2.4: The results of clearing the screen to a solid red color

Conclusion

This chapter set the groundwork for more exciting topics, such as 3D rendering. Hope-
fully, you now have a sense for a few of the objects you’ll see when working with Metal.
In the next chapter, we’ll look at drawing geometry in 2D.
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Chapter 3

Drawing in 2D

In the previous chapter, we got a glimpse of many of the essential moving parts of the
Metal framework: devices, textures, command buffers, and command queues. Even
though it introduced a lot of Metal’s moving parts, we couldn’t cover everything at once.
This chapter will add a little more depth to the discussion of the parts of Metal that are
used when rendering geometry. In particular, we will take a trip through the Metal ren-
dering pipeline, introduce functions and libraries, and issue our first draw calls.

The end goal of this chapter is to show you how to start rendering actual geometry with
Metal. The triangles we draw will only be in 2D. Subsequent chapters will introduce the
math necessary to draw 3D shapes and eventually animate 3D models.

Setup

The initializer of the MBEMetalView class has been refactored to call a sequence of meth-
ods that will do all the work necessary to get us ready to render:

[self makeDevice];
[self makeBuffers];
[self makePipeline];

-makeDevice is precisely the same code that used to be included directly in the -init
method, as we saw in Chapter 2:

- (void)makeDevice
{

device = MTLCreateSystemDefaultDevice();

13
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self.metalLayer.device = device;
self.metalLayer.pixelFormat = MTLPixelFormatBGRA8Unorm;

}

The definitions of the other two methods will be given in the following sections.

Using Buffers to Store Data

Metal provides a protocol, MTLBuffer, for representing an untyped buffer of bytes with
a fixed length. Its interface is very similar to NSData, in that it has a contents property
(like NSData’s bytes property) and a length property. However, Metal buffers are cre-
ated by requesting a buffer of a particular size from a Metal device.

We will use one Metal buffer to store both the positions and colors of the vertices we
want to draw. This is called an interleaved buffer, because the position and color data is
woven together into a contiguous stream, instead of specifying separate buffers for each
of the vertex properties.

We define a structure to hold the position and color of each vertex. The members of
this struct are of type vector_float4, which is a type offered by Apple’s SIMD (which
stands for “single-instruction, multiple-data”) framework. In some instances, SIMD
types can be operated on more efficiently than regular arrays of floats. Metal shaders
operate most naturally on SIMD data, so we use them in client code too.

Here’s our vertex type, representing a vertex with position and color:

typedef struct
{

vector_float4 position;
vector_float4 color;

} MBEVertex;

Our buffer will hold three vertices, enough to draw one triangle. The vertices are colored
red, green, and blue, respectively. Since these values will not change, we declare them
statically, then ask Metal for a buffer that contains a copy of the values:

- (void)makeBuffers
{

static const MBEVertex vertices[] =
{

{ .position = { 0.0, 0.5, 0, 1 }, .color = { 1, 0, 0, 1 } },
{ .position = { -0.5, -0.5, 0, 1 }, .color = { 0, 1, 0, 1 } },
{ .position = { 0.5, -0.5, 0, 1 }, .color = { 0, 0, 1, 1 } }
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};

self.vertexBuffer = [device newBufferWithBytes:vertices
length:sizeof(vertices)
options:MTLResourceOptionCPUCacheModeDefault];

}

You might have noticed that each vertex position is composed of four components, even
though we only care about the x and y positions (since we’re drawing a 2D triangle).
This is because Metal works most naturally in 4D homogeneous coordinates, where each
point has x, y, z, and w coordinates, with w fixed at 1. We use homogeneous coordinates
because they make transformations like translation and projection more natural. We will
cover these transformations in the following chapter.

In order to simplify the math we need to do in our shaders, the points are specified in clip
space coordinates, where the x-axis runs from -1 to 1 going left to right, and the y-axis runs
from -1 to 1 from bottom to top.

Each color is composed of the familiar red, green, blue and alpha components.

Now, let’s look at the vertex and fragment functions that will be processing this data
when we draw.

Functions and Libraries

Functions

As discussed in Chapter 1, modern graphics APIs provide a “programmable pipeline,”
meaning that they allow a lot of the operations carried out by the GPU to be specified
by small programs applied to each vertex or pixel. These are commonly referred to as
“shaders”. This is a poor name, since shaders are responsible for much more than cal-
culating the shading (color) of pixels. The core Metal framework does not use the name
“shader,” but we will use it interchangeably with “function” throughout this text.

To incorporate Metal shader code into our project, we need to add a Metal source file to
our project to contain the shaders that will process our vertices and fragments.



16 Chapter 3. Drawing in 2D

Figure 3.1: Adding a Metal shader source file in Xcode

Here is the preamble of Shaders.metal:

using namespace metal;

struct Vertex
{

float4 position [[position]];
float4 color;

};

We define a struct named Vertex that looks very similar to the vertex struct we created
in our Objective-C client code. One difference is that each member is of type float4
rather than vector_float4. These are conceptually the same type (a SIMD vector of
four 32-bit floats), but since the Metal shading language derives from C++, it is written
differently. Vector and matrix types in Metal shader code belong to the simd namespace,
which is inferred by the shader compiler, allowing us to simply write the type as float4.

One other difference is the presence of the [[position]] attribute on the position
struct member. This attribute is used to signify to Metal which value should be regarded
as the clip-space position of the vertex returned by the vertex shader. When returning
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a custom struct from a vertex shader, exactly one member of the struct must have this
attribute. Alternatively, you may return a float4 from your vertex function, which is
implicitly assumed to be the vertex’s position.

The definition of Metal shader functions must be prefixed with a function qualifier, which
is one of vertex, fragment, or kernel. The vertex function qualifier denotes that a function
will be used as a vertex shader, which is run once on each vertex in the geometry that
is being drawn. In this case, our vertex shader is named vertex_main, and it looks like
this:

vertex Vertex vertex_main(device Vertex *vertices [[buffer(0)]],
uint vid [[vertex_id]])

{
return vertices[vid];

}

Since we are not transforming the position or color of the vertex in the vertex shader, we
can simply return (by copy) the vertex at the index specified by the parameter with the
[[vertex_id]] attribute, which runs from 0 to 2 as the vertex function is called for each
vertex. If we were doing more sophisticated work, such as projecting the vertex or per-
vertex lighting, we would do it here. We will see much more advanced vertex shaders in
subsequent chapters.

Since each triangle that we draw to the screen might cover many pixels, there must be a
pipeline stage that takes the values returned by the vertex function and interpolates them
to produce a value for each possible pixel (fragment) in the current triangle. This stage is
called the rasterizer. The rasterizer effectively “chops up” triangles into their constituent
fragments and produces an interpolated value for each of the properties (position and
color, in our case) at each pixel that might be affected by the current triangle. These inter-
polated values are then handed to the fragment function, which performs any necessary
per-fragment work (such as texturing and per-pixel lighting).

The source for the fragment function is quite brief:

fragment float4 fragment_main(Vertex inVertex [[stage_in]])
{

return inVertex.color;
}
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The fragment function, fragment_main, takes a Vertex qualified with the attribute qual-
ifier [[stage_in]], which identifies it as per-fragment data rather than data that is con-
stant across a draw call. This vertex does not correspond exactly to an instance of Vertex
as returned by the vertex function. Rather, as described above, it is an interpolated ver-
tex generated by the rasterizer.

It is the responsibility of the fragment function to return a color to be written into the
renderbuffer, so fragment_main simply extracts the (interpolated) fragment color and
returns it.

Libraries

Often, graphics libraries require the source of each shader to be compiled separately.
Shaders must then be linked together to form a program. Metal introduces a nicer abstrac-
tion around shaders: the library. A library is nothing more than a logical group of func-
tions written in the Metal shading language. In the case of this chapter’s sample project,
we have lumped our vertex and fragment function into a single file (Shaders.metal). This
file will be compiled along with the rest of the project, and the compiled functions are
included in the app bundle. Metal allows us to easily look up functions by name at run-
time as shown in the next listing.

id<MTLLibrary> library = [self.device newDefaultLibrary];

id<MTLFunction> vertexFunc = [library newFunctionWithName:@"vertex_main"];
id<MTLFunction> fragmentFunc = [library newFunctionWithName:@"fragment_main"];

We could also have chosen to dynamically compile the application’s shaders into a li-
brary at runtime and request the function objects from it. Since the shader code is known
at application compile time, this is a unnecessary step, and we just use the default li-
brary.

Once you have references to your vertex and fragment functions, you configure your
pipeline to use them, and the necessary linkage is performed implicitly by Metal.
This is illustrated in the following sections. The code above is incorporated in the
-makePipeline method in the sample code.

The Render Pipeline

Previous generations of graphics libraries have led us to think of graphics hardware as a
state machine: you set some state (like where to pull data from, and whether draw calls
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should write to the depth buffer), and that state affects the draw calls you issue after-
ward. Most of the API calls in a graphics library like OpenGL exist to allow you to set
various aspects of state. This was especially true of the “fixed-function pipeline” as dis-
cussed in Chapter 1.

Metal provides a somewhat different model. Rather than calling API that acts on some
global “context” object, much of Metal’s state is built into pre-compiled objects compris-
ing a virtual pipeline that takes vertex data from one end and produces a rasterized im-
age on the other end.

Why does this matter? By requiring expensive state changes to be frozen in precompiled
render state, Metal can perform validation up-front that would otherwise have to be
done every draw call. A complex state machine like OpenGL spends a substantial
amount of CPU time simply making sure the state configuration is self-consistent. Metal
avoids this overhead by requiring that we fix the most expensive state changes as part of
pipeline creation, rather than allowing them to arbitrarily change at any time. Let’s look
at this in more depth.

Render Pipeline Descriptors

In order to build the pipeline state that describes how Metal should render our geome-
try, we need to create a descriptor object that joins together a few things: the vertex and
fragment functions we want to use when drawing, and the format of our framebuffer
attachments.

A render pipeline descriptor is an object of type MTLRenderPipelineDescriptor that holds
configuration options for a pipeline. Here is how we create a pipeline descriptor object:

MTLRenderPipelineDescriptor *pipelineDescriptor = [MTLRenderPipelineDescriptor
new];

pipelineDescriptor.vertexFunction = vertexFunc;
pipelineDescriptor.fragmentFunction = fragmentFunc;
pipelineDescriptor.colorAttachments[0].pixelFormat =

self.metalLayer.pixelFormat;

The vertex and fragment function properties are set to the function objects we previously
requested from the default library.

When drawing, we can target many different kinds of attachments. Attachments describe
the textures into which the results of drawing are written. In this case, we have just one
attachment: the color attachment at index 0. This represents the texture that will actually
be displayed on the screen. We set the attachment’s pixel format to the pixel format of
the CAMetalLayer that backs our view so that Metal knows the color depth and compo-
nent order of the pixels in the texture to which it will be drawing.
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Now that we have a pipeline descriptor, we need to ask Metal to do the work of creating
the render pipeline state.

Render Pipeline State

A render pipeline state is an object conforming to protocol MTLRenderPipelineState. We
create a pipeline state by providing our newly-created pipeline descriptor to our device,
storing the result in another property named pipeline.

self.pipeline = [self.device
newRenderPipelineStateWithDescriptor:pipelineDescriptor
error:NULL];

The pipeline state encapsulates the compiled and linked shader program derived from
the shaders we set on the descriptor. Therefore, it is a somewhat costly object. Ideally,
you will only create one render pipeline state for each pair of shader functions, but some-
times the target pixel formats of your attachments will vary, necessitating additional
render pipeline state objects. The point is that creating a render pipeline state object is
expensive, so you should avoid creating them on a per-frame basis, and cache them as
much as possible.

The code above is the central portion of the -buildPipeline method in the sample code.
Since the render pipeline state object will live for the lifetime of our application, we store
it in a property. We also create a command queue and store it in a propery, as described
in the previous chapter.

Encoding Render Commands

In the previous chapter, we didn’t interact much with the render command encoder,
since we weren’t performing any drawing. This time around, we need to encode actual
draw calls into our render command buffer. First, let’s revisit the retrieval of a drawable
from the layer and the configuration of a render pass descriptor. This is the beginning of
the -redraw method for this sample project:

id<CAMetalDrawable> drawable = [self.metalLayer nextDrawable];
id<MTLTexture> framebufferTexture = drawable.texture;

If for some reason we don’t get a drawable or a renderable texture from our drawable,
the actual draw calls are guarded by an if (drawable) conditional. Trying to create a
command buffer with a pass descriptor whose texture is nil will result in an exception.

The renderPass object is constructed exactly as before, except that we have chosen a
light gray color to clear the screen with, instead of the obnoxious red we used last time.
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MTLRenderPassDescriptor *passDescriptor = [MTLRenderPassDescriptor
renderPassDescriptor];

passDescriptor.colorAttachments[0].texture = framebufferTexture;
passDescriptor.colorAttachments[0].clearColor = MTLClearColorMake(0.85, 0.85,

0.85, 1);
passDescriptor.colorAttachments[0].storeAction = MTLStoreActionStore;
passDescriptor.colorAttachments[0].loadAction = MTLLoadActionClear;

Now, we start a render pass by creating a render command encoder with our render
pass descriptor and encode our draw call:

id<MTLRenderCommandEncoder> commandEncoder = [commandBuffer
renderCommandEncoderWithDescriptor:passDescriptor];

[commandEncoder setRenderPipelineState:self.pipeline];
[commandEncoder setVertexBuffer:self.vertexBuffer offset:0 atIndex:0];
[commandEncoder drawPrimitives:MTLPrimitiveTypeTriangle vertexStart:0

vertexCount:3];
[commandEncoder endEncoding];

The -setVertexBuffer:offset:atIndex: method is used to map from the MTLBuffer
objects we created earlier to the parameters of the vertex function in our shader code.
Recall that the vertices parameter was attributed with the [[buffer(0)]] attribute,
and notice that we now provide an index of 0 when preparing our draw call.

We call the -drawPrimitives:vertexStart:vertexCount:instanceCount: method to
encode a request to draw our triangle. We pass 0 to the vertexStart parameter so that
we begin drawing from the very start of the buffer. We pass 3 for vertexCount because
a triangle has three points.

We finish up as before by triggering display of the drawable and committing the com-
mand buffer:

[commandBuffer presentDrawable:drawable];
[commandBuffer commit];

These lines round out the new implementation of the -redraw method.

Staying In-Sync With CADisplayLink

Now that our -redraw implementation is complete, we need to figure out how to call it
repeatedly. We could use a regular old NSTimer, but Core Animation provides a much
better way: CADisplayLink. This is a special kind of timer that is synchronized with the
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display loop of the device, leading to more consistent timing. Each time the display link
fires, we’ll call our -redraw method to update the screen.

We override -didMoveToSuperview to configure the display link:

- (void)didMoveToSuperview
{

[super didMoveToSuperview];
if (self.superview)
{

self.displayLink = [CADisplayLink displayLinkWithTarget:self
selector:@selector(displayLinkDidFire:)];

[self.displayLink addToRunLoop:[NSRunLoop mainRunLoop]
forMode:NSRunLoopCommonModes];

}
else
{

[self.displayLink invalidate];
self.displayLink = nil;

}
}

This creates a display link and schedules it with the main run loop. If we are removed
from our superview, we invalidate the display link and nil it out.

Sixty times per second, the display link fires and invokes its target method,
-displayLinkDidFire:, which in turn calls -redraw:

- (void)displayLinkDidFire:(CADisplayLink *)displayLink
{

[self redraw];
}

The Sample Project

The sample project for this chapter is in the 03-DrawingIn2D directory. If you build and
run it, you should see a very colorful triangle appear on the screen.
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Figure 3.2: A multicolored triangle, rendered by Metal

Note that if you rotate the display, the triangle is distorted. This is because we specified
in the coordinates of the triangle in clip space, which always runs from -1 to 1 along each
axis regardless of the aspect ratio. In the next chapter we will discuss how to compensate
for the aspect ratio when rendering three-dimensional figures.
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Chapter 4

Drawing in 3D

Building on what we learned about the rendering pipeline in the previous chapter, we
will now begin our coverage of rendering in three dimensions.

Specifying Geometry in 3D

Cube Geometry

The object we will render in this chapter is a simple cube. It is easy to write the vertices
of a cube in code, avoiding the complexity of loading a 3D model for now. Here are the
vertices for the cube mesh:

const MBEVertex vertices[] =
{

{ .position = { -1, 1, 1, 1 }, .color = { 0, 1, 1, 1 } },
{ .position = { -1, -1, 1, 1 }, .color = { 0, 0, 1, 1 } },
{ .position = { 1, -1, 1, 1 }, .color = { 1, 0, 1, 1 } },
{ .position = { 1, 1, 1, 1 }, .color = { 1, 1, 1, 1 } },
{ .position = { -1, 1, -1, 1 }, .color = { 0, 1, 0, 1 } },
{ .position = { -1, -1, -1, 1 }, .color = { 0, 0, 0, 1 } },
{ .position = { 1, -1, -1, 1 }, .color = { 1, 0, 0, 1 } },
{ .position = { 1, 1, -1, 1 }, .color = { 1, 1, 0, 1 } }

};

25
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Figure 4.1: The cube rendered by the sample app

We reuse the same MBEVertex struct from the previous chapter, which has a position
and color for each vertex. Since we have not introduced lighting yet, giving each vertex a
distinct color provides an important depth cue. As before, we create a buffer to hold the
vertices:

vertexBuffer = [device newBufferWithBytes:vertices
length:sizeof(vertices)
options:MTLResourceOptionCPUCacheModeDefault];

Index Buffers

In the previous chapter, we stored the vertices of our triangle in the order they were to
be drawn, and each vertex was used only once. In the case of a cube, each vertex belongs
to several triangles. Ideally, we would reuse those vertices instead of storing additional
copies of each vertex in memory. As models grow in size, vertex reuse becomes even
more important.

Fortunately, like most graphics libraries, Metal gives us the ability to provide an index
buffer along with our vertex buffer. An index buffer contains a list of indices into the ver-
tex buffer that specifies which vertices make up each triangle.

First, we define a couple of typedefs that will simplify working with indices:
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typedef uint16_t MBEIndex;
const MTLIndexType MBEIndexType = MTLIndexTypeUInt16;

Starting out, we will use 16-bit unsigned indices. This allows each mesh to contain up
to 65536 distinct vertices, which will serve our purposes for quite a while. If we need to
accommodate more vertices in the future, we can change these definitions, and our code
will adapt to the larger index size. Metal allows 16- and 32-bit indices.

Each square face of the cube is broken up into two triangles, comprising six indices. We
specify them in an array, then copy them into a buffer:

const MBEIndex indices[] =
{

3, 2, 6, 6, 7, 3,
4, 5, 1, 1, 0, 4,
4, 0, 3, 3, 7, 4,
1, 5, 6, 6, 2, 1,
0, 1, 2, 2, 3, 0,
7, 6, 5, 5, 4, 7

};

indexBuffer = [device newBufferWithBytes:indices
length:sizeof(indices)
options:MTLResourceOptionCPUCacheModeDefault];

Now that we have defined some geometry to work with, let’s talk about how to render a
3D scene.

Dividing Work between the View and the Renderer

In the previous chapter, we gave the MBEMetalView class the responsibility of rendering
the triangle. Now, we would like to move to a more sustainable model, by fixing the
functionality of the view, and offloading the job of resource management and rendering
to a separate class: the renderer.

Responsibilities of the View Class

The view class should only be concerned with getting pixels onto the screen, so we re-
move the command queue, render pipeline, and buffer properties from it. It retains the
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responsibility of listening to the display link and managing the texture(s) that will be
attachments of the render pass.

The new MBEMetalView provides properties named currentDrawable, which vends the
CAMetalDrawable object for the current frame, and currentRenderPassDescriptor,
which vends a render pass descriptor configured with the drawable’s texture as its pri-
mary color attachment.

The Draw Protocol

In order to do drawing, we need a way for the view to communicate with us that it’s
time to perform our draw calls. We decouple the notion of a view from the notion of a
renderer through a protocol named MBEMetalViewDelegate which has a single required
method: -drawInView:.

This draw method will be invoked once per display cycle to allow us to refresh
the contents of the view. Within the delegate’s implementation of the method, the
currentDrawable and currentRenderPassDescriptor properties can be used to create
a render command encoder (which we will frequently call a render pass) and issue draw
calls against it.

Responsibilities of the Renderer Class

Our renderer will hold the long-lived objects that we use to render with Metal, including
things like our pipeline state and buffers. It conforms to the MBEMetalViewDelegate
protocol and thus responds to the -drawInView: message by creating a command buffer
and command encoder for issuing draw calls. Before we get to that, though, we need to
talk about the work the draw calls will be doing.

Transforming from 3D to 2D

In order to draw 3D geometry to a 2D screen, the points must undergo a series of trans-
formations: from object space, to world space, to eye space, to clip space, to normalized
device coordinates, and finally to screen space.

From Object Space to World Space

The vertices that comprise a 3D model are expressed in terms of a local coordinate space
(called object space). The vertices of our cube are specified about the origin, which lies
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at the cube’s center. In order to orient and position objects in a larger scene, we need to
specify a transformation that scales, translates, and rotates them into world space.

You may recall from linear algebra that matrices can be multiplied together (concatenated)
to build up a single matrix that represents a sequence of linear transformations. We will
call the matrix that gathers together the sequence of transformations that move an object
into world space the model matrix. The model matrix of our cube consists of a scale trans-
formation followed by two rotations. Each of these individual transformations varies
with time, to achieve the effect of a pulsing, spinning cube.

Here is the code for creating the sequence of transformations and multiplying them to-
gether to create the world transformation:

float scaleFactor = sinf(5 * self.time) * 0.25 + 1;
vector_float3 xAxis = { 1, 0, 0 };
vector_float3 yAxis = { 0, 1, 0 };
matrix_float4x4 xRot = matrix_float4x4_rotation(xAxis, self.rotationX);
matrix_float4x4 yRot = matrix_float4x4_rotation(yAxis, self.rotationY);
matrix_float4x4 scale = matrix_float4x4_uniform_scale(scaleFactor);
matrix_float4x4 modelMatrix = matrix_multiply(matrix_multiply(xRot, yRot),

scale);

We use the convention that matrices are applied from right-to-left to column vectors, so
modelMatrix scales a vertex, then rotates it about the Y axis, then rotates it about the X
axis. The rotationX, rotationY and time properties are updated each frame so that this
transformation is animated.

From World Space to View Space

Now that we have our scene (the scaled, rotated cube) in world space, we need to po-
sition the entire scene relative to the eye point of our virtual camera. This transforma-
tion is called the view space (or, equivalently, the eye space or camera space) transformation.
Everything that will eventually be visible on screen is contained in a pyramidal shape
called the view frustum, illustrated below. The position of the virtual camera’s eye is the
apex of this viewing volume, the point behind the middle of the near plane of the view-
ing frustum.
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Figure 4.2: The view frustum. The apex of the frustum coincides with the eye of the
virtual camera.

Constructing the transformation for the camera requires us to think backwards: moving
the camera farther back is equivalent to moving the scene deeper into the screen, and
rotating the scene counterclockwise about the Y axis is equivalent to the camera orbiting
the scene clockwise.

In our sample scene, we want to position the camera a few units back from the cube.
We use the convention that world space is “right-handed,” with the Y axis pointing up,
meaning that the Z axis points out of the screen. Therefore, the correct transformation
is a translation that moves each vertex a negative distance along the Z axis. Equivalently,
this transformation moves the camera a positive distance along the Z axis. It’s all rela-
tive.

Here is the code for building our view matrix:

vector_float3 cameraTranslation = { 0, 0, -5 };
matrix_float4x4 viewMatrix = matrix_float4x4_translation(cameraTranslation);

From View Space to Clip Space

The projection matrix transforms view space coordinates into clip space coordinates.

Clip space is the 3D space that is used by the GPU to determine visibility of triangles
within the viewing volume. If all three vertices of a triangle are outside the clip volume,
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the triangle is not rendered at all (it is culled). On the other hand, if one or more of the
vertices is inside the volume, it is clipped to the bounds, and one or more modified trian-
gles are used as the input to the vertex shader.

Figure 4.3: An illustration of a triangle being clipped. Two of its vertices are beyond the
clipping bounds, so the face has been clipped and retriangulated, creating three new
triangles.

The perspective projection matrix takes points from view space into clip space via a se-
quence of scaling operations. During the previous transformations, the w component
remained unchanged and equal to 1, but the projection matrix affects the w component
in such a way that if the absolute values of the x, y, or z component is greater than the
absolute value of the w component, the vertex lies outside the viewing volume and is
clipped.

The perspective projection transformation is encapsulated in the matrix_float4x4_perspective
utility function. In the sample code, fix a vertical field of view of about 70 degrees,
choose a far and near plane value, and select an aspect ratio that is equal to the ratio
between the current drawable width and height of our Metal view.

float aspect = drawableSize.width / drawableSize.height;
float fov = (2 * M_PI) / 5;
float near = 1;
float far = 100;
matrix_float4x4 projectionMatrix = matrix_float4x4_perspective(aspect, fov,

near, far);

We now have a sequence of matrices that will move us all the way from object space



32 Chapter 4. Drawing in 3D

to clip space, which is the space that Metal expects the vertices returned by our ver-
tex shader to be in. Multiplying all of these matrices together produces a model-view-
projection (MVP) matrix, which is what we will actually pass to our vertex shader so that
each vertex can be multiplied by it on the GPU.

The Perspective Divide: From Clip Space to NDC

In the case of perspective projection, w component is calculated so that the perspective
divide produces foreshortening, the phenomenon of farther objects being scaled down
more.

After we hand a projected vertex to Metal from our vertex function, it divides each com-
ponent by the w component, moving from clip-space coordinates to normalized device
coordinates (NDC), after the relevant clipping is done against the viewing volume bounds.
Metal’s NDC space is a cuboid [−1, 1]×[−1, 1]×[0, 1], meaning that x and y coordinates
range from -1 to 1, and z coordinates range from 0 to 1 as we move away from the camera.

The Viewport Transform: From NDC to Window Coordinates

In order to map from the half-cube of NDC onto the pixel coordinates of a view, Metal
does one final internal transformation by scaling and biasing the normalized device coor-
dinates such that they cover the size of the viewport. In all of our sample code, the view-
port is a rectangle covering the entire view, but it is possible to resize the viewport such
that it covers only a portion of the view.

3D Rendering in Metal

Uniforms

A uniform is a value that is passed as a parameter to a shader that does not change over
the course of a draw call. From the point of view of a shader, it is a constant.

In the following chapters, we will bundle our uniforms together in a custom structure.
Even though we only have one such value for now (the MVP matrix), we will establish
the habit now:

typedef struct
{

matrix_float4x4 modelViewProjectionMatrix;
} MBEUniforms;
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Since we are animating our cube, we need to regenerate the uniforms every frame, so
we put the code for generating the transformations and writing them into a buffer into a
method on the renderer class named -updateUniforms.

The Vertex Shader

Now that we have some of the foundational math for 3D drawing in our toolbox, let’s
discuss how to actually get Metal to do the work of transforming vertices.

Our vertex shader takes a pointer to an array of vertices of type Vertex, a struct declared
in the shader source. It also takes a pointer to a uniform struct of type Uniforms. The
definition of these types are:

struct Vertex
{

float4 position [[position]];
float4 color;

};

struct Uniforms
{

float4x4 modelViewProjectionMatrix;
};

The vertex shader itself is straightforward. In order to find the clip-space coordinates of
the vertex, it multiplies the position by the MVP matrix from the uniforms and assigns
the result to the output vertex. It also copies the incoming vertex color to the output ver-
tex without modification.

vertex Vertex vertex_project(device Vertex *vertices [[buffer(0)]],
constant Uniforms *uniforms [[buffer(1)]],
uint vid [[vertex_id]])

{
Vertex vertexOut;
vertexOut.position = uniforms->modelViewProjectionMatrix *

vertices[vid].position;
vertexOut.color = vertices[vid].color;

return vertexOut;
}

Notice that we are using two different address space qualifiers in the parameter list of
the function: device and constant. In general, the device address space should be
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used when indexing into a buffer using per-vertex or per-fragment offset such as the
parameter attributed with vertex_id. The constant address space is used when many
invocations of the function will access the same portion of the buffer, as is the case when
accessing the uniform structure for every vertex.

The Fragment Shader

The fragment shader is identical to the one used in the previous chapter:

fragment half4 fragment_flatcolor(Vertex vertexIn [[stage_in]])
{

return half4(vertexIn.color);
}

Preparing the Render Pass and Command Encoder

Each frame, we need to configure the render pass and command encoder before issuing
our draw calls:

[commandEncoder setDepthStencilState:self.depthStencilState];
[commandEncoder setFrontFacingWinding:MTLWindingCounterClockwise];
[commandEncoder setCullMode:MTLCullModeBack];

The depthStencilState property is set to the previously-configured stencil-depth state
object.

The front-face winding order determines whether Metal considers faces with their vertices
in clockwise or counterclockwise order to be front-facing. By default, Metal considers
clockwise faces to be front-facing. The sample data and sample code prefer counterclock-
wise, as this makes more sense in a right-handed coordinate system, so we override the
default by setting the winding order here.

The cull mode determines whether front-facing or back-facing triangles (or neither)
should be discarded (culled). This is an optimization that prevents triangles that cannot
possibly be visible from being drawn.

Issuing the Draw Call

The renderer object sets the necessary buffer properties on the render pass’ argument
table, then calls the appropriate method to render the vertices. Since we do not need to
issue additional draw calls, we can end encoding on this render pass.
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[renderPass setVertexBuffer:self.vertexBuffer offset:0 atIndex:0];

NSUInteger uniformBufferOffset = sizeof(MBEUniforms) * self.bufferIndex;
[renderPass setVertexBuffer:self.uniformBuffer offset:uniformBufferOffset

atIndex:1];

[renderPass drawIndexedPrimitives:MTLPrimitiveTypeTriangle
indexCount:[self.indexBuffer length] / sizeof(MBEIndex)
indexType:MBEIndexType
indexBuffer:self.indexBuffer
indexBufferOffset:0];

[renderPass endEncoding];

As we saw in the previous chapter, the first parameter tells Metal what type of primi-
tive we want to draw, whether points, lines, or triangles. The rest of the parameters tell
Metal the count, size, address, and offset of the index buffer to use for indexing into the
previously-set vertex buffer.

The Sample Project

The sample code for this chapter is in the 04-DrawingIn3D directory. Bringing together
everything we learned above, it renders a pulsing, rotating cube in glorious 3D.
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Chapter 5

Lighting

In this chapter, we’ll start to increase the realism in our virtual scenes by loading 3D
models from files and lighting them with directional lights.

Up until now, we’ve been hardcoding our geometry data directly into the program. This
is fine for tiny bits of geometry, but it becomes unsustainable pretty quickly. By storing
model data on the file system in a standard format, we can begin to work with much
larger datasets.

Loading OBJ Models

One of the most popular formats for storing basic 3D model data is the OBJ format
(Wavefront Technologies 1991). OBJ files store lists of vertex positions, normals, texture
coordinates, and faces in a human-readable format. The sample code includes a rudimen-
tary OBJ parser that can load OBJ models into memory in a suitable format for rendering
with Metal. We will not describe the loader in detail here.

The model we use in this chapter is a teapot. The teapot shape is one of the most recog-
nizable figures from the early days of computer graphics. It was originally modeled after
a Melitta teapot by Martin Newell at the University of Utah in 1975. It frequently makes
appearances in graphics tutorials because of its interesting topology and asymmetry.
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Figure 5.1: A rendered computer model of the Utah teapot

You should feel free to recompile the sample project, replacing the included model with
your own OBJ file. Models that are normalized to fit in a 1×1×1 cube around the origin
will be the easiest to work with.

The Structure of OBJ Models

Models in OBJ format are logically divided into groups, which are essentially named lists
of polygons. Loading a model is as simple as finding the OBJ file in the app bundle, ini-
tializing an MBEOBJModel object, and asking for a group by index.

NSURL *modelURL = [[NSBundle mainBundle] URLForResource:@"teapot"
withExtension:@"obj"];

MBEOBJModel *teapot = [[MBEOBJModel alloc] initWithContentsOfURL:modelURL];
MBEOBJGroup *group = [teapot groupAtIndex:1];
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Index 1 corresponds to the first group in the file; polygons that don’t belong to any
group are added to an implicit, unnamed group at index 0.

MBEOBJGroup is a struct with two pointer members: vertices and indices. These lists
of vertices and indices don’t do us any good by themselves; we need to put them into
buffers. Since lists of vertices and indices are so often used together, we need an object to
hold this pair of buffers. This is what we will call a mesh.

The Mesh Class

The interface of the mesh class is very straightforward, consisting of just two buffer prop-
erties.

@interface MBEMesh : NSObject
@property (readonly) id<MTLBuffer> vertexBuffer;
@property (readonly) id<MTLBuffer> indexBuffer;
@end

We subclass the mesh class to produce application-specific mesh types. For now, we
need a mesh that represents an OBJ group, so we create an MBEOBJMesh class with the
following initializer:

- (instancetype)initWithGroup:(MBEOBJGroup *)group
device:(id<MTLDevice>)device;

This method takes an OBJ group and a Metal device and generates a buffer pair with
storage for the group’s vertices and indices. We can render such a mesh by binding its
vertex buffer to the argument table and encoding an indexed draw call as we did in the
previous chapter:

[renderPass setVertexBuffer:mesh.vertexBuffer offset:0 atIndex:0];
[renderPass drawIndexedPrimitives:MTLPrimitiveTypeTriangle

indexCount:[mesh.indexBuffer length] / sizeof(MBEIndex)
indexType:MBEIndexType
indexBuffer:self.mesh.indexBuffer
indexBufferOffset:0];

Normals

Our lighting calculations will be dependent on the normal vectors of our objects. A nor-
mal vector is a unit vector (vector of length 1) that is perpendicular to a surface. If you
imagine a plane that touches a convex surface at just one point (what we call a tangent
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plane), the normal vector is the vector that is perpendicular to the plane. It represents the
“outward” direction of the surface.

Our OBJ model loader does the work necessary to generate a normal vector for each ver-
tex in the model. We also added a member to the vertex struct to hold the normal, so that
its declaration in the shader source now looks like this:

struct Vertex
{

float4 position;
float4 normal;

};

Lighting

In order to start constructing realistic scenes, we need a way to model how light inter-
acts with surfaces. Fortunately, much of computer graphics concerns itself with figuring
out clever ways to approximate the behavior of light. We will use an approximation con-
sisting of three terms to model different species of light that occur in a scene: ambient,
diffuse, and specular. Each pixel’s color will be the sum of these three terms. Here is the
equation representing that relationship at the highest level:

Itotal = Iambient + Idiffuse + Ispecular

Above, I stands for intensity, specifically, outgoing radiant intensity. We’ll use L to sig-
nify properties of the light source, and M to signify properties of the material. None of
these values have a precise physical basis. Our first attempt at approximating illumina-
tion involves a lot of shortcuts. Therefore, the values we choose for these quantities will
be based on aesthetics rather than physical exactitude.

The types of lights we will be dealing with are directional; they do not have a defined
position in space. Instead, we imagine that they are far enough away to be characterized
exclusively by the direction in which they emit light. The sun is an example of such a
directional light.

Ambient Light

Ambient light is a non-directional kind of light that is not associated with a particular
light source. Instead, it is an approximation used to model indirect light (light that has
bounced off other surfaces in the scene), which is not captured by the other terms. Ambi-
ent lighting prevents the parts of geometry that are not directly lit from being completely
black. The contribution of ambient light is normally subtle.
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Ambient light is calculated as the product of the ambient intensity of the light and the
ambient response of the surface:

Iambient = LambientMambient

It is often the case that one models the ambient contribution as a property of the scene
rather than a light. This signifies the fact that ambient light doesn’t really come from one
source; rather, it is the sum of light that has bounced around the scene from whatever
light sources are present. We choose to make ambient light a property of the light itself,
for the sake of convenience and formulaic consistency.

Figure 5.2: The ambient light term usually makes a small contribution

Diffuse Light

Diffuse light follows Lambert’s cosine law, which states that the intensity of reflected light
is directly proportional to the cosine of the angle between the direction of the incident
light and the normal of the surface. The normal is a vector that is perpendicular to the
surface. Light that is head-on is reflected to a greater degree than light that arrives at a
shallow angle of incidence.
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Figure 5.3: In diffuse lighting, the quantity of light reflected is proportional to the angle
between the normal and the angle of incidence

Diffuse reflection is modeled by the following simplified equation:

Idiffuse = cosθ · Mdiffuse · Ldiffuse

If we assume that the normal vector and incident light direction vector are unit vectors,
we can use the familiar dot product to calculate this term:

Idiffuse = N · L · Mdiffuse · Ldiffuse

Figure 5.4: The diffuse term represents the tendency of surfaces to reflect light equally in
all directions
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Specular Light

The specular light term is used to model “shiny” surfaces. It describes the tendency of
the material to reflect light in a particular direction rather than scattering it in all direc-
tions. Shiny materials create specular highlights, which are a powerful visual cue for illus-
trating how rough or shiny surfaces are. “Shininess” is quantified by a parameter called
the specular power. For example, a specular power of 5 corresponds with a rather matte
surface, while a specular power of 50 corresponds to a somewhat shiny surface.

There are a couple of popular ways to compute the specular term, but here we will use
a Blinn-Phong approximation (Blinn 1977). The Blinn-Phong specular term uses a vector
called the halfway vector that points halfway between the direction to the light source and
the direction from which the surface is being viewed:

H = 1
2 (D + V)

Once we have the halfway vector in hand, we compute the dot product between the the
surface normal and the halfway vector, and raise this quantity to the specular power of the
material.

Ispecular = (N · H)specularP owerLspecularMspecular

This exponentiation is what controls how “tight” the resulting specular highlights are;
the higher the specular power, the sharper the highlights will appear.

Figure 5.5: The specular term represents the tendency of certain surfaces to reflect light
in a particular direction
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The Result

Now that we’ve computed all three terms of our lighting equation, we sum together the
results at each pixel to find its final color. In the next few sections, we’ll talk about how
to actually achieve this effect with the Metal shading language.

Figure 5.6: Adding up the contributions of ambient, diffuse, and specular terms pro-
duces the final image

Lighting in Metal

Representing Lights and Materials

We will use two structs to wrap up the properties associated with lights and materials. A
light has three color properties, one for each of the light terms we discussed in detail.

struct Light
{

float3 direction;
float3 ambientColor;
float3 diffuseColor;
float3 specularColor;

};

A material also has three color properties; these model the response of the material to in-
coming light. The color of light reflected from a surface is dependent on the color of the
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surface and the color of the incoming light. As we’ve seen, the color of light and the color
of the surface are multiplied together to determine the color of the surface, and this color
is then multiplied by some intensity (1 in the case of ambient, N · L in the case of diffuse,
and N · H raised to some power in the case of specular). We model the specular power
as a float.

struct Material
{

float3 ambientColor;
float3 diffuseColor;
float3 specularColor;
float specularPower;

};

Uniforms

Much as we did in the previous chapter, we need to pass some uniform values to our
shaders to transform our vertices. This time, however, we need a couple of additional
matrices to do calclulations relevant to lighting.

struct Uniforms
{

float4x4 modelViewProjectionMatrix;
float4x4 modelViewMatrix;
float3x3 normalMatrix;

};

In addition to the model-view-projection matrix (MVP), we also store the model-view
matrix, which transforms vertices from object space to eye space. We need this because
specular highlights are view-dependent. We will discuss more of the implications of this
when dissecting the shader functions below.

We also include a normal matrix, which is used to transform the model’s normals into
eye space. Why do we need a separate matrix for this? The answer is that normals don’t
transform like positions. This seems counterintuitive at first, but consider this: when you
move an object around in space without rotating it, the “outward” direction at any point
on the surface is constant.

This gives us our first clue about how to construct the normal matrix: we need to strip
out any translation from the model view matrix. We do this by taking just the upper-left
3 × 3 portion of our model-view matrix, which is the portion responsible for rotation and
scaling.
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It turns out that as long as the model-view matrix consists only of rotations and uniform
scales (i.e., no stretching or shearing), this upper-left matrix is exactly the correct matrix
for transforming normals. In more complex situations, we instead need to use the inverse
transpose of this matrix, but the reasons for this are beyond the scope of this book.

The Vertex Function

To store the per-vertex values we will need for our lighting calculations, we declare a
separate “projected vertex” structure, which will be calculated and returned by the ver-
tex function:

struct ProjectedVertex { float4 position [[position]]; float3 eye; float3 normal; };

The eye member is the vector pointing from the vertex’s position in view space to the eye
of the virtual camera. The normal member is the view space normal of the vertex.

The vertex function computes these two new vectors, along with the projected (clip-
space) position of each vertex:

vertex ProjectedVertex vertex_project(device Vertex *vertices [[buffer(0)]],
constant Uniforms &uniforms [[buffer(1)]],
uint vid [[vertex_id]])

{
ProjectedVertex outVert;
outVert.position = uniforms.modelViewProjectionMatrix *

vertices[vid].position;
outVert.eye = -(uniforms.modelViewMatrix * vertices[vid].position).xyz;
outVert.normal = uniforms.normalMatrix * vertices[vid].normal.xyz;

return outVert;
}

The Fragment Function

For each fragment, we receive an interpolated “projected vertex” struct and use it to cal-
culate our three lighting terms:

fragment float4 fragment_light(ProjectedVertex vert [[stage_in]],
constant Uniforms &uniforms [[buffer(0)]])

{
float3 ambientTerm = light.ambientColor * material.ambientColor;
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float3 normal = normalize(vert.normal);
float diffuseIntensity = saturate(dot(normal, light.direction));
float3 diffuseTerm = light.diffuseColor * material.diffuseColor *

diffuseIntensity;

float3 specularTerm(0);
if (diffuseIntensity > 0)
{

float3 eyeDirection = normalize(vert.eye);
float3 halfway = normalize(light.direction + eyeDirection);
float specularFactor = pow(saturate(dot(normal, halfway)),

material.specularPower);
specularTerm = light.specularColor * material.specularColor *

specularFactor;
}

return float4(ambientTerm + diffuseTerm + specularTerm, 1);
}

The ambient term, as discussed, is simply the product of the ambient light intensity and
the material’s ambient response.

Since the normal and eye vectors we receive are not unit-length, we normalize them be-
fore use. This has to be done on a per-fragment basis because even if we had normalized
them in the vertex function, the interpolation done by the rasterizer does not preserve
the unit-length property.

To compute the diffuse term, we first take the dot product of the view-space normal and
the light direction. We then use the saturate function to clamp it between 0 and 1. Oth-
erwise, faces pointing away from the light would wind up with a negative diffuse inten-
sity, which is nonphysical. We multiply this cosine-rule intensity by the product of the
light’s diffuse contribution and the material’s diffuse response to get the complete dif-
fuse term.

To compute the specular factor, we compute the “halfway” vector by summing the light
direction and eye direction and normalizing the result. This has the effect of averaging
them, since each was unit-length before the addition. We take the dot product between
the surface normal and the halfway vector to get the specular base, then raise it to the
material’s specular power to get the specular intensity. As before, we multiply this with
the light’s specular color and the material’s specular response to get the complete specu-
lar term.

Finally, we sum all of three terms together and return the result as the color value of the
fragment.
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The Sample App

The sample code for this chapter is in the 05-Lighting directory. It loads a teapot model
from an OBJ file and shows it tumbling in 3D, much like the cube from the previous
chapter. This time, though, per-pixel lighting is applied to the model, giving it a much
more plausible (and very shiny) appearance.
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Textures

Textures are a central topic in rendering. Although they have many uses, one of their
primary purposes is to provide a greater level of detail to surfaces than can be achieved
with vertex colors alone. Using texture maps allows us to specify color on an essentially
per-pixel basis, greatly increasing the visually fidelity of our rendered images.

Over the next few chapters we will talk about several topics related to the use of textures
in Metal.

In this chapter, we’ll talk about texture mapping, which helps us bring virtual characters
to life. We’ll also introduce samplers, which give us powerful control over how texture
data is interpreted while drawing. Along the way, we will be assisted by a cartoon cow
named Spot.

49
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Figure 6.1: Meet Spot. (Model provided by Keenan Crane)

Textures

Textures are formatted image data. This makes them distinct from buffers, which are
unstructured blocks of memory. The types of textures we will be working with in this
chapter are 2D images. Although Metal supports several other kinds of textures, we can
introduce almost all of the important concepts by walking through an example of texture
mapping.

Texture Mapping

Texture mapping is the process of associating each vertex in a mesh with a point in a tex-
ture. This is similar to wrapping a present, in that a 2D sheet of wrapping paper (a tex-
ture) is made to conform to a 3D present (the mesh).
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Texture mapping is usually done with a specialized editing tool. The mesh is unwrapped
into a planar graph (a 2D figure that maintains as much of the connectivity of the 3D
model as possible), which is then overlaid on the texture image.

The following figure shows a 3D model of a cow (with the edges of its constituent faces
highlighted) and its corresponding texture map. Notice that the various parts of the
cow (head, torso, legs, horns) have been separated on the map even though they are con-
nected on the 3D model.

Figure 6.2: How to unwrap a cow. The mesh is flattened into a 2D surface to make it
easier to assign texture coordinates to vertices

Coordinate Systems

In Metal, the origin of the pixel coordinate system of a texture coincides with its top left
corner. This is the same as the coordinate system in UIKit. However, it differs from the
default texture coordinate system in OpenGL, where the origin is the bottom left corner.

The axes of the texture coordinate system are often labeled s and t (or u and v) to distin-
guish them from the x and y axes of the world coordinate system.
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Figure 6.3: Metal’s texture coordinate system has its origin in the top left corner.

The coordinate system of the texture coordinates must agree with the coordinate system
of the image data. Core Graphics contexts follow the bottom-left origin convention, so
in order to get image data that is suitable to use with Metal’s upper-left origin, we will
draw into a “flipped” Core Graphics context. The code for this is shown in a later sec-
tion.

Pixel Coordinates Versus Normalized Coordinates

Metal is flexible enough to allow us to specify texture coordinates in pixel coordinates or
normalized coordinates. Pixel coordinates range from (0, 0) to (width − 1, height − 1).
They therefore depend on the dimensions of the texture image. Normalized coordinates
range from (0, 0) to (1, 1), which makes them independent of image size.

We have chosen to use normalized coordinates throughout this chapter and the rest of
the book.

Filtering

Textures are discrete images composed of a finite number of pixels (called texels). How-
ever, when drawing, a texture may be drawn at a resolution that is higher or lower than
its native size. Therefore, it is important to be able to determine what the color of a tex-
ture should be between its texels, or when many texels are crunched into the same space.
When a texture is being drawn at a size higher than its native size, this is called magnifica-
tion. The inverse process, where a texture is drawn below its native resolution, is called
minification.
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The process of reconstructing image data from a texture is called filtering. Metal offers
two different filtering modes: nearest and linear.

Nearest (also called “nearest-neighbor”) filtering simply selects the closest texel to the
requested texture coordinate. This has the advantage of being very fast, but it can cause
the rendered image to appear blocky when textures are magnified (i.e., when each texel
covers multiple pixels).

Linear filtering selects the four nearest texels and produces a weighted average accord-
ing to the distance from the sampled coordinate to the texels. Linear filtering produces
much more visually-pleasing results than nearest-neighbor filtering and is sufficiently
fast to be performed in real-time.

Mipmaps

When a texture is minified, multiple texels may coincide with a single pixel. Even slight
motion in the scene can cause a shimmering phenomenon to appear. Linear filtering
does not help the situation, as the set of texels covering each pixel changes from frame to
frame.

One way to abate this issue is to prefilter the texture image into a sequence of images,
called mipmaps. Each mipmap in a sequence is half the size of the previous image, down
to a size of 1 × 1. When a texture is being minified, the mipmap at the closest resolution
is substituted for the original texture image.

Mipmapping is covered in-depth in the next chapter.

Addressing

Typically, when associating texture coordinates with the vertices of a mesh, the values
are constrained to [0, 1] along both axes. However, this is not always the case. Negative
texture coordinates, or coordinates greater than 1 can also be used. When coordinates
outside the [0, 1] range are used, the addressing mode of the sampler comes into effect.
There are a variety of different behaviors that can be selected.

Clamp-to-Edge Addressing

In clamp-to-edge addressing, the value along the edge of the texture is repeated for out-
of-bounds values.
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Figure 6.4: Clamp-to-edge filtering repeats the outer edge of the texture image for out of
bounds coordinates

Clamp-to-Zero Addressing

In clamp-to-zero addressing, the sampled value for out-of-bounds coordinates is either
black or clear, depending on whether the texture has an alpha color component.

Figure 6.5: Clamp-to-zero filtering produces a black color outside the bounds of the
texture image

Repeat Addressing

In repeat addressing, out-of-bounds coordinates wrap around the corresponding edge of
the texture and repeat from zero. In other words, the sampled coordinates are the frac-
tional parts of the input coordinates, ignoring the integer parts.



Creating Textures in Metal 55

Figure 6.6: Repeat addressing tiles the texture by repeating it

Mirrored Repeat Addressing

In mirrored repeat addressing, the sampled coordinates first increase from 0 to 1, then
decrease back to 0, and so on. This causes the texture to be flipped and repeated across
every other integer boundary.

Figure 6.7: Mirrored repeat addressing first repeats the texture mirrored about the axis,
then repeats it normally, and so on

Creating Textures in Metal

Before we actually ask Metal to create a texture object, we need to know a little more
about pixel formats, as well as how to get texture data into memory.
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Pixel Formats

A pixel format describes the way color information is laid out in memory. There are a few
different aspects to this information: the color components, the color component ordering,
the color component size, and the presence or absence of compression.

The common color components are red, green, blue, and alpha (transparency). These
may all be present (as in an RGBA format), or one or more may be absent. In the case of a
fully-opaque image, alpha information is omitted.

Color component ordering refers to which color components appear in memory: BGRA
or RGBA.

Colors may be represented with any degree of precision, but two popular choices are 8
bits per component and 32 bits per component. Most commonly, when 8 bits are used,
each component is an unsigned 8-bit integer, a value between 0 and 255. When 32 bits
are used, each component is usually a 32-bit float ranging from 0.0 to 1.0. Obviously, 32
bits offer far greater precision than 8 bits, but 8 bits is usually sufficient for capturing the
perceivable differences between colors, and is much better from a memory standpoint.

The pixel formats supported by Metal are listed in the MTLPixelFormat enumeration.
The supported formats vary based on operating system version and hardware, so consult
the Metal Programming Guide for further details.

Loading Image Data

We will use the powerful utilities provided by UIKit to load images from the application
bundle. To create a UIImage instance from an image in the bundle, we only need one line
of code:

UIImage *image = [UIImage imageNamed:@"my-texture-name"];

Unfortunately, UIKit does not provide a way to access the underlying bits of a UIImage.
Instead, we have to draw the image into a Core Graphics bitmap context that has the
same format as our desired texture. As part of this process, we transform the context
(with a translation followed by a scale) such that the resulting image bits are flipped
vertically. This causes the coordinate space of our image to agree with Metal’s texture
coordinate space.

CGImageRef imageRef = [image CGImage];

// Create a suitable bitmap context for extracting the bits of the image
NSUInteger width = CGImageGetWidth(imageRef);
NSUInteger height = CGImageGetHeight(imageRef);
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CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
uint8_t *rawData = (uint8_t *)calloc(height * width * 4, sizeof(uint8_t));
NSUInteger bytesPerPixel = 4;
NSUInteger bytesPerRow = bytesPerPixel * width;
NSUInteger bitsPerComponent = 8;
CGContextRef context = CGBitmapContextCreate(rawData, width, height,

bitsPerComponent, bytesPerRow, colorSpace,
kCGImageAlphaPremultipliedLast | kCGBitmapByteOrder32Big);

CGColorSpaceRelease(colorSpace);

// Flip the context so the positive Y axis points down
CGContextTranslateCTM(context, 0, height);
CGContextScaleCTM(context, 1, -1);

CGContextDrawImage(context, CGRectMake(0, 0, width, height), imageRef);
CGContextRelease(context);

This code is wrapped in the MTLTextureLoader utility class.

Texture Descriptors

A texture descriptor is a lightweight object that specifies the dimensions and format of a
texture. When creating a texture, you provide a texture descriptor and receive an object
that conforms to the MTLTexture protocol, which is a subprotocol of MTLResource. The
properties specified on the texture descriptor (texture type, dimensions, and format) are
immutable once the texture has been created, but you can still update the content of the
texture as long as the pixel format of the new data matches the pixel format of the receiv-
ing texture.

The MTLTextureDescriptor class provides a couple of factory methods for building
common texture types. To describe a 2D texture, you must specify the pixel format, tex-
ture dimensions in pixels, and whether Metal should allocate space to store the appropri-
ate mipmap levels for the texture.

[MTLTextureDescriptor
texture2DDescriptorWithPixelFormat:MTLPixelFormatRGBA8Unorm
width:width
height:height
mipmapped:YES];
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Creating a Texture Object

It is now quite straightforward to create a texture object. We simply request a texture
from the device by supplying a valid texture descriptor:

id<MTLTexture> texture = [self.device
newTextureWithDescriptor:textureDescriptor];

Updating Texture Contents

Setting the data in the texture is also quite simple. We create a MTLRegion that represents
the entire texture and then tell the texture to replace that region with the raw image bits
we previously retrieved from the context:

MTLRegion region = MTLRegionMake2D(0, 0, width, height);
[texture replaceRegion:region mipmapLevel:0 withBytes:rawData

bytesPerRow:bytesPerRow];

Passing Textures to Shader Functions

This texture is now ready to be used in a shader. To pass a texture to a shader function,
we set it on our command encoder right before we issue our draw call. Textures have
their own slots in the argument table separate from buffers, so the indices we use start
from 0.

[commandEncoder setFragmentTexture:texture atIndex:0];

This texture can now be bound to a parameter with the attribute [[texture(0)]] in a
shader function’s parameter list.

Samplers

In Metal, a sampler is an object that encapsulates the various render states associated with
reading textures: coordinate system, addressing mode, and filtering. It is possible to cre-
ate samplers in shader functions or in application code. We will discuss each in turn in
the following sections.
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Creating Samplers in Shaders

We will use samplers in our fragment function, because we want to produce a different
color for each pixel in the rendered image. So, it sometimes makes sense to create sam-
plers directly inside a fragment function.

The following code creates a sampler that will sample in the normalized coordinate
space, using the repeat addressing mode, with linear filtering:

constexpr sampler s(coord::normalized,
address::repeat,
filter::linear);

Samplers that are local to a shading function must be qualified with constexpr. This
keyword, new in C++11, signifies that an expression may be computed at compile-time
rather than runtime. This means that just one sampler struct will be created for use
across all invocations of the function.

The coord value may either be normalized or pixel.

The possible values for address are clamp_to_zero, clamp_to_edge, repeat,
mirrored_repeat.

The possible values for filter are nearest and linear‘, to select between nearest-
neighbor and linear filtering.

All of these values belong to strongly-typed enumerations. Strongly typed enumerations
are a new feature in C++11 that allow stricter type-checking of enumerated values. It is
an error to omit the type name of the value (i.e., you must say filter::linear and not
simply linear).

The parameters may be specified in any order, since the constructor of the sampler is
implemented as a variadic template function (another new feature of C++11).

Using a Sampler

Getting a color from a sampler is straightforward. Textures have a sample function that
takes a sampler and a set of texture coordinates, returning a color. In a shader function,
we call this function, passing in a sampler and the (interpolated) texture coordinates of
the current vertex.

float4 sampledColor = texture.sample(sampler, vertex.textureCoords);

The sampled color may then be used in whatever further computation you want, such as
lighting.
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Creating Samplers in Application Code

To create a sampler in application code, we fill out a MTLSamplerDescriptor object and
the ask the device to give us a sampler (an object conforming to MTLSamplerState).

MTLSamplerDescriptor *samplerDescriptor = [MTLSamplerDescriptor new];
samplerDescriptor.minFilter = MTLSamplerMinMagFilterNearest;
samplerDescriptor.magFilter = MTLSamplerMinMagFilterLinear;
samplerDescriptor.sAddressMode = MTLSamplerAddressModeClampToEdge;
samplerDescriptor.tAddressMode = MTLSamplerAddressModeClampToEdge;

samplerState = [device newSamplerStateWithDescriptor:samplerDescriptor];

Note that we had to individually specify the magnification and minification filters.
When creating samplers in shader code, we used the filter parameter to specify both
at once, but we could also use mag_filter and min_filter separately to get the same
behavior as above.

Similarly, the address mode must be set separately for each texture axis, whereas we did
this with the sole address parameter in shader code.

Passing Samplers as Shader Arguments

Passing samplers looks very similar to passing textures, but samplers reside in yet an-
other set of argument table slots, so we use a different method to bind them to indices
starting at 0:

[commandEncoder setFragmentSamplerState:samplerState atIndex:0];

We can now refer to this sampler by attributing it with [[sampler(0)]] in shader code.

The Sample Project

The sample project is in the 06-Texturing directory. It borrows heavily from prior chap-
ters, so the shared concepts are not reiterated in this chapter.

The major change is the use of a texture/sampler pair to determine the diffuse color of
the mesh at each pixel instead of interpolating a single color across the whole surface.
This allows us to draw our textured cow model, producing a greater sense of realism and
detail in the scene.
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Mipmapping

In this chapter we will learn about mipmapping, an important technique for rendering
textured objects at a distance. We will find out why mipmapping is important, how it
complements regular texture filtering, and how to use the blit command encoder to gen-
erate mipmaps efficiently on the GPU.

A Review of Texture Filtering

In the previous chapter we used texture filtering to describe how texels should be
mapped to pixels when the screen-space size of a pixel differs from the size of a texel.
This is called magnification when each texel maps to more than one pixel, and minification
when each pixel maps to more than one texel. In Metal, we have a choice of what type of
filtering to apply in each of these two regimes.

Nearest filtering just selects the closest texel to represent the sampled point. This results
in blocky output images, but is computationally cheap. Linear filtering selects four adja-
cent texels and produces a weighted average of them.

In Metal, we specify type of filtering to use in the minFilter and magFilter properties
of a MTLSamplerDescriptor.
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Figure 7.1: The sample app illustrates the effect of various mipmapping filters. The
mipmap used here is artificially colored for demonstration purposes.

Mipmap Theory

The name “mipmap” comes from the Latin phrase “multum in parvo”, roughly meaning
“much in little”. This alludes to the fact that each texel in a mipmap combines several of
the texels in the level above it. Before we talk about how to build mipmaps, let’s spend
some time talking about why we need them in the first place.

The Aliasing Problem

You might think that because we’ve handled the case of texture minification and magnifi-
cation, our texture mapping should be perfect and free of visual artifacts. Unfortunately,
there is a sinister effect at play when a texture is minified beyond a certain factor.

As the virtual camera pans across the scene, a different set of texels are used each frame
to determine the color of the pixels comprising distant objects. This occurs regardless of
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the minification filter selected. Visually, this produces unsightly shimmering. The prob-
lem is essentially one of undersampling a high-frequency signal (the signal in this case is
the texture). If there were a way to smooth the texture out in the process of sampling, we
could instead trade a small amount of blurriness for a significant reduction in the dis-
tracting shimmering effect during motion.

The difference between using a linear minification filter and a linear minification filter
combined with a mipmap is shown below, to motivate further discussion.

Figure 7.2: A side-by-side comparison of basic linear filtering and mipmapped linear
filtering

The Mipmap Solution

Mipmapping is a technique devised to solve this aliasing problem. Rather than down-
sampling the image on the fly, a sequence of prefiltered images (levels) are generated,
either offline or at load time. Each level is a factor of two smaller (along each dimension)
than its predecessor. This leads to a 33% increase in memory usage for each texture, but
can greatly enhance the fidelity of the scene in motion.

In the figure below, the levels generated for a checkerboard texture are shown.

Figure 7.3: The various levels that comprise a mipmap. Each image is half the size of its
predecessor, and ¼ the area, down to 1 pixel.
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Mipmap Sampling

When a mipmapped texture is sampled, the projected area of the fragment is used to
determine which mipmap level most nearly matches the texture’s texel size. Fragments
that are smaller, relative to the texel size, use mipmap levels that have been reduced to a
greater degree.

In Metal, the mipmap filter is specified separately from the minification filter, in the
mipFilter property of the descriptor, but the min and mip filters interact to create four
possible scenarios. They are described below in order of increasing computational cost.

When minFilter is set to MTLSamplerMinMagFilterNearest and mipFilter is set to
MTLSamplerMipFilterNearest, the closest-matching mipmap level is selected, and a
single texel from it is used as the sample.

When minFilter is set to MTLSamplerMinMagFilterNearest and mipFilter is set to
MTLSamplerMipFilterLinear, the two closest-matching mipmap levels are selected, and
one sample from each is taken. These two samples are then averaged to produce the final
sample.

When minFilter is set to MTLSamplerMinMagFilterLinear and mipFilter is set to
MTLSamplerMipFilterNearest, the closest-matching mipmap level is selected, and four
texels are averaged to produce the sample.

When minFilter is set to MTLSamplerMinMagFilterLinear and mipFilter is set to
MTLSamplerMipFilterLinear, the two closest-matching mipmap levels are selected,
and four samples from each are averaged to create a sample for the level. These two av-
eraged samples are then averaged again to produce the final sample.

The figure below shows the difference between using a nearest and linear mip filter
when a linear min filter is used:

Figure 7.4: The effect of using a linear min filter and nearest mip filter. Mip levels have
been artificially colored to show different levels more clearly.
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Figure 7.5: The effect of using a linear min filter and linear mip filter. Mip levels have
been artificially colored to show different levels more clearly.

Mipmapped Textures in Metal

Building a mipmapped texture in Metal is a two-part process: creating the texture object
and copying image data into the mipmap levels. Metal does not automatically generate
mipmap levels for us, so we’ll look at two ways to do the generation ourselves below.

Creating the Texture

We can use the same convenience method for creating a 2D mipmapped texture descrip-
tor as for non-mipmapped textures, passing YES as the final parameter.

[MTLTextureDescriptor
texture2DDescriptorWithPixelFormat:MTLPixelFormatRGBA8Unorm
width:width
height:height
mipmapped:YES];

When the mipmapped parameter is equal to YES, Metal computes the mipmapLevelCount
property of the descriptor. The formula used to find the number of levels is
floor(log2(max(width, height))) + 1. For example, a 512 × 256 texture has 10
levels.

Once we have a descriptor, we request a texture object from the Metal device:

id<MTLTexture> texture = [device newTextureWithDescriptor:descriptor];
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Generating Mipmap Levels Manually

Creating mipmap levels involves creating smaller and smaller versions of the base image,
until a level has a dimension that is only one pixel in size.

iOS and OS X share a framework called Core Graphics that has low-level utilities for
drawing shapes, text, and images. Generating a mipmap level consists of creating a
bitmap context with CGBitmapContextCreate, drawing the base image into it with
CGContextDrawImage, and then copying the underlying data to the appropriate level
of the Metal texture as follows:

MTLRegion region = MTLRegionMake2D(0, 0, mipWidth, mipWidth);
[texture replaceRegion:region

mipmapLevel:level
withBytes:mipImageData
bytesPerRow:mipWidth * bytesPerPixel]

For level 1, mipWidth and mipHeight are equal to half of the original image size. Each
time around the mipmap generation loop, the width and height are halved, level is in-
cremented, and the process repeats until all levels have been generated.

In the sample app, a tint color is applied to each mipmap level generated with Core
Graphics so that they can be easily distinguished. The figure below shows the images
that comprise the checkerboard texture, as generated by Core Graphics.

Figure 7.6: The mipmap levels generated by the CPU; a tint color has been applied to
each level to distinguish it when rendered

The Blit Command Encoder

The chief disadvantage to generating mipmaps on the CPU is speed. Using Core Graph-
ics to scale the image down can easily take ten times longer than using the GPU. But
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how do we offload the work to the GPU? Happily, Metal includes a special type of com-
mand encoder whose job is to leverage the GPU for image copying and resizing opera-
tions: the blit command encoder. The term “blit” is a derivative of the phrase “block trans-
fer.”

Capabilities of the Blit Command Encoder

Blit command encoders enable hardware-accelerated transfers among GPU resources
(buffers and textures). A blit command encoder can be used to fill a buffer with a par-
ticular value, copy a portion of one texture into another, and copy between a buffer and
texture.

We won’t explore all of the features of the blit command encoder in this chapter. We’ll
just use it to generate all of the levels of a mipmap.

Generating Mipmaps with the Blit Command Encoder

Generating mipmaps with a blit command encoder is very straightforward, since there is
a method on the MTLBlitCommandEncoder protocol named generateMipmapsForTexture:.
After calling this method, we add a completion handler so we know when the com-
mand finishes. The process is very fast, taking on the order of one millisecond for a
1024 × 1024 texture on the A8 processor.

id<MTLBlitCommandEncoder> commandEncoder = [commandBuffer blitCommandEncoder];
[commandEncoder generateMipmapsForTexture:texture];
[commandEncoder endEncoding];
[commandBuffer addCompletedHandler:^(id<MTLCommandBuffer> buffer) {

// texture is now ready for use
}];
[commandBuffer commit];

When the completion block is called, the texture is ready to be used for rendering.

The Sample App

The sample code for this chapter is in the 07-Mipmapping directory.

The sample app shows a rotating, textured cube. You can use a tap gesture to alternate
among several different modes: no mipmapping, mipmapping with a GPU-generated
texture, mipmapping with a CPU-generated texture and linear mip filtering, and
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mipmapping with a CPU-generated texture and nearest mip filtering. The CPU-
generated texture has a differently-colored tint applied to each level to make it obvious
which levels are being sampled.

You can use a pinch gesture to zoom the cube closer and farther, which will cause dif-
ferent mipmap levels to be sampled, if mipmapping is enabled. You can also observe
the degradation caused by not using mipmaps when the cube is nearly edge-on, or as it
moves away from the camera.
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Reflection and Refraction with Cube
Maps

In this chapter, we’ll talk about some of the more advanced features of texturing in Metal.
We’ll apply a cube map to a skybox to simulate a detailed environment surrounding
the scene. We’ll also introduce a technique called cube environment mapping to simulate
reflection and refraction, to further enhance the realism of our virtual world.

First, let’s talk about the sample scene.

Setting the Scene

The scene for the sample app consists of a skybox surrounding a torus knot. A skybox is a
cube that has a texture applied to the inside to create the illusion of a large outdoor envi-
ronment surrounding the camera. You are probably familiar with the torus, a geometric
figure that consists of a circle swept perpendicularly around another circle. A torus knot
introduces an additional complication by twisting the path taken by the orbiting circle,
creating a figure that is more visually interesting.

Instead of loading models from disk to construct the sample scene, we will be generating
the necessary geometry procedurally.
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Figure 8.1: The environment map reflected off a torus knot. Textures courtesy of Emil
Persson (http://humus.name)

The Vertex Format

Although the objects in our scene will be textured, we do not need to explicitly store tex-
ture coordinates in our vertices. Instead, we will generate texture coordinates for the sky-
box and torus knot in specially-crafted vertex shaders. Therefore, each vertex has only
two properties: position and normal:

typedef struct
{

vector_float4 position;
vector_float4 normal;

} MBEVertex;

The Mesh Class

As we did previously, we use a mesh object to wrap up a vertex buffer and an index
buffer so that we can conveniently issue indexed draw calls. The base class, MBEMesh,
provides an abstract interface to these two buffers.
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The Skybox Mesh

Generating the skybox mesh is straightforward. The skybox is a unit cube about the ori-
gin, so the skybox class uses a static list of positions, normals, and indices to build its
buffers. Note that the indices are ordered to produce cube faces that point inward, since
the virtual camera will be inside the skybox at all times.

Figure 8.2: A cubic environment map applied to a skybox can produce the illusion of a
detailed backdrop.

The Torus Knot Mesh

The MBETorusKnotMesh class generates vertices as it sweeps along the path of a torus
knot, then generates indices that knit together the vertices into a solid mesh. You can
produce a large variety of interesting knots by varying the parameters passed to the
mesh’s initializer method.
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Figure 8.3: This trefoil knot is one kind of knot that can be produced by the torus knot
mesh class.

Now that we have some geometry to render, let’s talk about a new kind of texture in
Metal.

Cube Textures

Cube textures (also called “cube maps”) are a special type of texture. In contrast to regu-
lar 2D textures, cube textures are collections of six images that have a spatial relationship
to one another. In particular, each image corresponds to a direction along one of the axes
of the 3D coordinate system.

In the figure below, the six textures comprising a cube map are laid out to show the cube
from the inside. The -Y face is in the middle of the cross.

The Cube Map Coordinate Space

Cube maps in Metal are left-handed, meaning that if you imagine yourself inside the cube,
with the +X face to your right, and the +Y face above you, the +Z axis will be the one
directly ahead. If instead you are positioned outside the cube, the coordinate system
appears to be right-handed, and all of the images are mirrored.
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Figure 8.4: An unwrapped cube map.

Creating and Loading a Cube Map Texture

Creating a cube texture and loading it with image data is similar to creating and loading
a 2D texture, with a couple of exceptions.

The first difference is the texture type. MTLTextureDescriptor has a convenience
method for creating a texture descriptor describing a cube texture. The textureType
property of the descriptor is set to MTLTextureTypeCube, and the height and width
properties are set equal to the size parameter. The width and height of all constituent
textures of the cube texture must be equal.

[MTLTextureDescriptor
textureCubeDescriptorWithPixelFormat:MTLPixelFormatRGBA8Unorm
size:cubeSize
mipmapped:NO];
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Creating the texture object from the descriptor is done in the same manner as when creat-
ing a 2D texture:

id<MTLTexture> texture = [device newTextureWithDescriptor:textureDescriptor];

The other difference between 2D textures and cube textures is how image data is loaded.
Because a cube texture actually contains six distinct images, we have to specify a slice
parameter when setting the pixel data for each face. Each slice corresponds to one cube
face, with the following mapping:

Face number Cube texture face

0 Positive X
1 Negative X
2 Positive Y
3 Negative Y
4 Positive Z
5 Negative Z

To load the data into every cube face, we iterate over the slices, replacing the slice’s en-
tire region with the appropriate image data:

for (int slice = 0; slice < 6; ++slice)
{

// ...
// fetch image data for current cube face
// ...

[texture replaceRegion:region
mipmapLevel:0

slice:slice
withBytes:imageData

bytesPerRow:bytesPerRow
bytesPerImage:bytesPerImage];

}

imageData must be in whatever pixel format was specified in the texture descriptor.
bytesPerRow is the width of the cube multiplied by the number of bytes per pixel.
bytesPerImage, in turn, is the number of bytes per row multiplied by the height of the
cube. Since the width and height are equal, you can substitute the cube side length in
these calculations.
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Sampling a Cube Map

Cube map texture coordinates work somewhat differently than 2D texture coordinates.
The first difference is that three coordinates are required to sample a cube map, rather
than two. The three coordinates are treated as a ray originating at the center of the cube,
intersecting the face at a particular point on the cube. In this way, cube texture coordi-
nates represent a direction rather than a particular point.

Some interesting edge cases can arise when sampling in this way. For example, the three
vertices of a triangle might span the corner of the cube map, sampling three different
faces. Metal handles such cases automatically by correctly interpolating the samples
along the edges and corners of the cube.

Applications of Cube Maps

Now that we know how to create, load, and sample a cube map, let’s talk about some
of the interesting effects we can achieve with cube maps. First, we need to texture our
skybox.

Texturing the Skybox

Recall that we created our skybox mesh from a set of static data representing a unit cube
about the origin. The positions of the corners of a unit cube map exactly to the corner
texture coordinates of a cube map, so it is possible to reuse the cube’s vertex positions as
its texture coordinates, ignoring the face normals.

Drawing the Skybox

When rendering a skybox, one very important consideration is its effect on the depth
buffer. Since the skybox is intended to be a backdrop for the scene, all of the other objects
in the scene must appear in front of it, lest the illusion be broken. For this reason, the sky-
box is always drawn before any other objects, and writing to the depth buffer is disabled.
This means that any objects drawn after the skybox replace its pixels with their own.

Drawing the skybox first also introduces a small optimization: because the skybox cov-
ers every pixel on the screen, it is not necessary to clear the render buffer’s color texture
before drawing the scene.
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The Skybox Vertex Shader

The vertex shader for the skybox is very straightforward. The position is projected ac-
cording to the combined model-view-projection matrix, and the texture coordinates are
set to the model space positions of the cube corners.

vertex ProjectedVertex vertex_skybox(device Vertex *vertices [[buffer(0)]],
constant Uniforms &uniforms [[buffer(1)]],
uint vid [[vertex_id]])

{
float4 position = vertices[vid].position;

ProjectedVertex outVert;
outVert.position = uniforms.modelViewProjectionMatrix * position;
outVert.texCoords = position;
return outVert;

}

The Fragment Shader

We will use the same fragment shader for both the skybox and the torus knot figure. The
fragment shader simply inverts the z-coordinate of the texture coordinates and then sam-
ples the texture cube in the appropriate direction:

fragment half4 fragment_cube_lookup(ProjectedVertex vert [[stage_in]],
constant Uniforms &uniforms [[buffer(0)]],
texturecube<half> cubeTexture [[texture(0)]],
sampler cubeSampler [[sampler(0)]])

{
float3 texCoords = float3(vert.texCoords.x, vert.texCoords.y,

-vert.texCoords.z);
return cubeTexture.sample(cubeSampler, texCoords);

}

We invert the z coordinate in this case because the coordinate system of the cube map is
left-handed as viewed from the inside (borrowing OpenGL’s convention), but we prefer
a right-handed coordinate system. This is simply the convention adopted by the sample
app; you may prefer to use left-handed coordinates. Consistency and correctness are
more important than convention.
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The Physics of Reflection

Reflection occurs when light bounces off of a reflective surface. Here, we will only con-
sider perfect mirror reflection, the case where all light bounces off at an angle equal to its
incident angle. To simulate reflection in a virtual scene, we run this process backward,
tracing a ray from the virtual camera through the scene, reflecting it off a surface, and
determining where it intersects our cube map.

Figure 8.5: Light is reflected at an angle equal to its angle of incidence

The Reflection Vertex Shader

To compute the cube map texture coordinates for a given vector, we need to find the
vector that points from the virtual camera to the current vertex, as well as its normal.
These vectors must both be relative to the world coordinate system. The uniforms we
pass into the vertex shader include the model matrix as well as the normal matrix (which
is the inverse transpose of the model matrix). This allows us to compute the necessary
vectors for finding the reflected vector according to the formula given above.

Fortunately, Metal includes a built-in function that does the vector math for us. reflect
takes two parameters: the incoming vector, and the surface normal vector. It returns the
reflected vector. In order for the math to work correctly, both input vectors should be
normalized in advance.

vertex ProjectedVertex vertex_reflect(device Vertex *vertices [[buffer(0)]],
constant Uniforms &uniforms [[buffer(1)]],
uint vid [[vertex_id]])

{
float4 modelPosition = vertices[vid].position;
float4 modelNormal = vertices[vid].normal;
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float4 worldCameraPosition = uniforms.worldCameraPosition;
float4 worldPosition = uniforms.modelMatrix * modelPosition;
float4 worldNormal = normalize(uniforms.normalMatrix * modelNormal);
float4 worldEyeDirection = normalize(worldPosition - worldCameraPosition);

ProjectedVertex outVert;
outVert.position = uniforms.modelViewProjectionMatrix * modelPosition;
outVert.texCoords = reflect(worldEyeDirection, worldNormal);

return outVert;
}

The output vertex texture coordinates are interpolated by the hardware and passed to
the fragment shader we already saw. This creates the effect of per-pixel reflection, since
every execution of the fragment shader uses a different set of texture coordinates to sam-
ple the cube map.

The Physics of Refraction

The second phenomenon we will model is refraction. Refraction occurs when light passes
from one medium to another. One everyday example is how a straw appears to bend in
a glass of water.

Figure 8.6: The environment map refracted through a torus knot
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We won’t discuss the mathematics of refraction in detail here, but the essential character-
istic of refraction is that the amount the light bends is proportional to the ratio between
the indices of refraction of the two media it is passing between. The index of refraction of a
substance is a unitless quantity that characterizes how much it slows down the propaga-
tion of light, relative to a vacuum. Air has an index very near 1, while the index of water
is approximately 1.333 and the index of glass is approximately 1.5.

Refraction follows a law called Snell’s law, which states that the ratio of the sines of the
incident and transmitted angles is equal to the inverse ratio of the indices of refraction of
the media:
sin(θI )
sin(θT ) = η1

η0

Figure 8.7: Light is bent when passing between substances with different indices of
refraction

The Refraction Vertex Shader

The vertex shader for refraction is identical to that used for reflection, with the exception
that we use a different build-in function, refract. We provide the incident vector, the
surface normal, and the ratio between the two substances (air and glass, in the case of the
sample code). The refracted vector is returned and used as the cube map texture coordi-
nates as before.

vertex ProjectedVertex vertex_refract(device Vertex *vertices [[buffer(0)]],
constant Uniforms &uniforms [[buffer(1)]],
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uint vid [[vertex_id]])
{

float4 modelPosition = vertices[vid].position;
float4 modelNormal = vertices[vid].normal;

float4 worldCameraPosition = uniforms.worldCameraPosition;
float4 worldPosition = uniforms.modelMatrix * modelPosition;
float4 worldNormal = normalize(uniforms.normalMatrix * modelNormal);
float4 worldEyeDirection = normalize(worldPosition - worldCameraPosition);

ProjectedVertex outVert;
outVert.position = uniforms.modelViewProjectionMatrix * modelPosition;
outVert.texCoords = refract(worldEyeDirection, worldNormal, kEtaRatio);

return outVert;
}

Using Core Motion to Orient the Scene

The sample code for this chapter is in the 09-CubeMapping directory.

The scene in the sample app consists of a torus knot surrounded by a skybox. The torus
knot reflects or refracts the surrounding scene; you can tap to alternate between the two.

The Motion Manager

The app uses the orientation of the device to rotate the scene so that the torus always
appears at the center, with the environment revolving around it. This is achieved with
the CMMotionManager class from the Core Motion framework.

To use a motion manager to track the device’s movement, you should first check if de-
vice motion is available. If it is, you may proceed to set an update interval and request
that the motion manager start tracking motion. The following code performs these steps,
requesting an update sixty times per second.

CMMotionManager *motionManager = [[CMMotionManager alloc] init];
if (motionManager.deviceMotionAvailable)
{

motionManager.deviceMotionUpdateInterval = 1 / 60.0;
CMAttitudeReferenceFrame frame =

CMAttitudeReferenceFrameXTrueNorthZVertical;
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[motionManager startDeviceMotionUpdatesUsingReferenceFrame:frame];
}

Reference Frames and Device Orientation

A reference frame is a set of axes with respect to which device orientation is specified. Sev-
eral different reference frames are available. Each of them identifies Z as the vertical axis,
while the alignment of the X axis can be chosen according to the application’s need. We
choose to align the X axis with magnetic north so that the orientation of the virtual scene
aligns intuitively with the outside world and remains consistent between app runs.

The device orientation can be thought of as a rotation relative to the reference frame. The
rotated basis has its axes aligned with the axes of the device, with +X pointing to the
right of the device, +Y pointing to the top of the device, and +Z pointing out the front
of the screen.

Reading the Current Orientation

Each frame, we want to get the updated device orientation, so we can align our virtual
scene with the real world. We do this by asking for an instance of CMDeviceMotion from
the motion manager.

CMDeviceMotion *motion = motionManager.deviceMotion;

The device motion object provides the device orientation in several equivalent forms:
Euler angles, a rotation matrix, and a quaternion. Since we already use matrices to rep-
resent rotations in our Metal code, they are they best fit for incorporating Core Motion’s
data into our app.

Everyone has his or her own opinion about which view coordinate space is most intu-
itive, but we always choose a right-handed system with +Y pointing up, +X pointing
right, and +Z pointing toward the viewer. This differs from Core Motion’s conventions,
so in order to use device orientation data, we interpret Core Motion’s axes in the fol-
lowing way: Core Motion’s X axis becomes our world’s Z axis, Z becomes Y, and Y be-
comes X. We don’t have to mirror any axes, because Core Motion’s reference frames are
all right-handed.

CMRotationMatrix m = motion.attitude.rotationMatrix;

vector_float4 X = { m.m12, m.m22, m.m32, 0 };
vector_float4 Y = { m.m13, m.m23, m.m33, 0 };
vector_float4 Z = { m.m11, m.m21, m.m31, 0 };
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vector_float4 W = { 0, 0, 0, 1 };

matrix_float4x4 orientation = { X, Y, Z, W };
renderer.sceneOrientation = orientation;

The renderer incorporates the scene orientation matrix into the view matrices it con-
structs for the scene, thus keeping the scene in alignment with the physical world.

The Sample App

The sample code for this chapter is in the 08-CubeMapping directory.



Chapter 9

Compressed Textures

In this chapter, we will consider several GPU-friendly compressed texture formats.
These formats allow us to trade some image quality for substantial improvements in
disk usage and performance. In particular, we will look at the ETC2, PVRTC, and ASTC
formats.

Why Use Compressed Textures?

In previous chapters, we created textures by loading an image into memory, drawing
it into a bitmap context, and copying the bits into a Metal texture. These textures used
uncompressed pixel formats such as MTLPixelFormatRGBA8Unorm.

Metal also supports several compressed formats. These formats allow us to copy image
data directly into a texture without decompressing it. These formats are designed to be
decompressed on-demand by the GPU, when the texture is sampled rather than when it
is loaded.

The formats we will consider below are lossy, meaning they do not perfectly preserve
the image contents, as a lossless format like PNG does. Instead, they trade a reduction in
image quality for much smaller memory usage. Using compressed texture data therefore
greatly reduces the memory bandwidth consumed when sampling textures and is more
cache-friendly.
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Figure 9.1: The sample app showcases a variety of compressed texture formats

A Brief Overview of Compressed Texture Formats

S3TC

S3TC, also known as DXT, was the first compressed format to gain broad adoption, due
to its inclusion in DirectX 6.0 and OpenGL 1.3 in 1998 and 2001, respectively. Although
S3TC is broadly supported on desktop GPUs, it is not available on iOS devices.

PVRTC

The PVRTC image format was introduced by Imagination Technologies, creators of the
PowerVR series of GPUs at the heart of every iOS device. It was first described in a 2003
paper by Simon Fenney.

PVRTC operates by downsampling the source image into two smaller images, which
are upscaled and blended to reconstruct an approximation of the original. It considers
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blocks of 4 × 4 or 4 × 8 pixels at a time, which are packed into one 64-bit quantity. Thus,
each pixel occupies 4 bits or 2 bits, respectively.

One significant limitation of using PVRTC format on iOS is that textures must be square,
and each dimension must be a power of two. Fortunately, game textures are most com-
monly produced in dimensions that are compatible with this limitation.

ETC

Ericsson Texture Compression (ETC) debuted in 2005. Similarly to PVRTC’s 4-bit-per-
pixel mode, it compresses each 4×4 block of pixels into a single 64-bit quantity, but lacks
support for an alpha channel. A subsequent version, ETC2, adds support for 1-bit and 8-
bit alpha channels. ETC2 is supported by all Metal-compatible hardware, but PVRTC
often offers better quality at comparable file sizes.

ASTC

Advanced Scalable Texture Compression (ASTC) is the most recent compressed tex-
ture format supported by Metal. Developed by AMD and supported fairly widely on
OpenGL ES 3.0-class hardware, this format incorporates a selectable block size (from
4×4 to 12×12) that determines the compression ratio of the image. This unprecedented
flexibility makes ASTC a very attractive choice, but it requires an A8 processor at a mini-
mum, making it unusable on devices such as the iPhone 5s.

Container Formats

The compression format used by a texture is only half of the picture. In order to load
a texture from disk, we need to know its dimensions (width and height) and its pixel
format. This metadata is often written into the file itself, in the form of a header that pre-
cedes the image data. The layout of the header is described by the container format of the
image. In this chapter, we will use two container formats: PVR and ASTC.

The PVR Container Format

Not to be confused with the PVRTC compression format, the PVR container format de-
scribes how the data in a texture file should be interpreted. A PVR file can contain un-
compressed data or compressed data in numerous formats (including S3TC, ETC, and
PVRTC).
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There are a few different, mutually-incompatible versions of the PVR format. This means
that each version of PVR requires different code to parse correctly. For example, the
header structure for the “legacy” format (PVRv2) looks like this:

struct PVRv2Header
{

uint32_t headerLength;
uint32_t height;
uint32_t width;
uint32_t mipmapCount;
uint32_t flags;
uint32_t dataLength;
uint32_t bitsPerPixel;
uint32_t redBitmask;
uint32_t greenBitmask;
uint32_t blueBitmask;
uint32_t alphaBitmask;
uint32_t pvrTag;
uint32_t surfaceCount;

};

The header structure for the most recent version (PVRv3) looks like this:

struct PVRv3Header {
uint32_t version;
uint32_t flags;
uint64_t pixelFormat;
uint32_t colorSpace;
uint32_t channelType;
uint32_t height;
uint32_t width;
uint32_t depth;
uint32_t surfaceCount;
uint32_t faceCount;
uint32_t mipmapCount;
uint32_t metadataLength;

};

There are more similarities than differences between the headers. The various fields de-
scribe the contained data, including the texture’s dimensions and whether the file con-
tains a set of mipmaps or a single image. If the file contains mipmaps, they are simply
concatenated together with no padding. The program reading the file is responsible for
calculating the expected length of each image. The sample code for this chapter includes
code that parses both legacy and PVRv3 containers.
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Note that the header also has surfaceCount and (in the case of PVRv3) faceCount fields,
which can be used when writing texture arrays or cube maps into a single file. We will
not use these fields in this chapter.

The KTX Container Format

The KTX file format is a container devised by the Khronos Group, who are responsible
for many open standards, including OpenGL. KTX is designed to make loading texture
data into OpenGL as seamless as possible, but we can use it to load texture data into
Metal quite easily.

The KTX file header looks like this:

struct KTXHeader
{

uint8_t identifier[12];
uint32_t endianness;
uint32_t glType;
uint32_t glTypeSize;
uint32_t glFormat;
uint32_t glInternalFormat;
uint32_t glBaseInternalFormat;
uint32_t width;
uint32_t height;
uint32_t depth;
uint32_t arrayElementCount;
uint32_t faceCount;
uint32_t mipmapCount;
uint32_t keyValueDataLength;

} MBEKTXHeader;

The identifier field is a sequence of bytes that identifies the file as a KTX container and
helps detect encoding errors. The fields beginning with gl correspond to OpenGL enu-
merations. The one we care about is the glInternalFormat field, which tells us which
encoder (PVRTC, ASTC, etc) was used to compress the texture data. Once we know this,
we can map the GL internal format to a Metal pixel format and extract the data from the
remainder of the file.

Refer to the KTX specification (Khronos Group 2013) for all of the details on this format.
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Creating Compressed Textures

There are various tools for creating compressed textures, both on the command line and
with a GUI. Below, we’ll look at two tools, which allow us to create textures in the for-
mats discussed above.

Creating Textures with texturetool

Apple includes a command-line utility with Xcode called texturetool that can convert
images into compressed texture formats such as PVRTC and ASTC. At the time of this
writing, it does not support the PVRv3 container format. Rather, it writes PVR files using
the legacy (PVRv2) format, described above. With the -e flag, you specify your desired
container format: PVR, KTX, or RAW (no header). With the -f format you specify the
compression type: PVRTC or ASTC. The -m flag signifies that all mipmaps should be
generated and written sequentially into the file.

Each compression format has its own flags for selecting the degree of compression. For
example, to create a 4 bit-per-pixel PVRTC texture with a PVR legacy header, including
all mipmap levels, use the following invocation of texturetool:

texturetool -m -e PVRTC -f PVR --bits-per-pixel-4 -o output.pvr input.png

To create an ASTC-compressed texture in an KTX container with an 8 × 8 block size
using the “thorough” compression mode:

texturetool -m -e ASTC -f KTX --block-width-8 --block-height-8 \
--compression-mode-thorough -o output.astc input.png

Creating Textures with PVRTexToolGUI

Imagination Technologies includes a tool in their PowerVR SDK that allows creation
of compressed textures with a GUI. PVRTexToolGUI allows you to import an image
and select a variety of compression formats, including ASTC, PVRTC, and ETC2. Un-
like texturetool, this application uses the PVRv3 container format by default, so you
should use code that expects the appropriate header format if you compress textures
with this tool.

PVRTexToolGUI has a command-line counterpart, PVRTexToolCLI, that exposes all of
the parameters available in the GUI and allows you to write scripts for rapidly batch-
converting textures.
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Figure 9.2: The PVRTexToolGUI from Imagination Technologies allows the user to com-
press images in a variety of formats

Loading Compressed Texture Data into Metal

Loading compressed textures is a two-fold process. First, we read the header of the con-
tainer format. Then, we read the image data described by the header and hand it to
Metal. Regardless of the compression algorithm used, we do not need to do any parsing
of the image data ourselves, since Metal is able to understand and decode compressed
textures in hardware.

Creating a texture with compressed data is exactly the same as with uncompressed data.
First, we create a texture descriptor with the appropriate pixel format and dimensions.
If the texture has mipmaps, we indicate so with the mipmapped parameter. For example,
here is how we create a texture descriptor for a PVRTC texture with 4 bits per pixel for
which we have mipmaps:

[MTLTextureDescriptor
texture2DDescriptorWithPixelFormat:MTLPixelFormatPVRTC_RGBA_4BPP
width:width
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height:height
mipmapped:YES];

We can then ask a device to produce a texture that matches this descriptor:

id<MTLTexture> texture = [device newTextureWithDescriptor:descriptor];

For each mipmap level in the image, we need to make a separate call to the MTLTexture
method -replaceRegion:mipmapLevel:withBytes:bytesPerRow:, as follows:

MTLRegion region = MTLRegionMake2D(0, 0, levelWidth, levelHeight);
[texture replaceRegion:region

mipmapLevel:level
withBytes:levelData

bytesPerRow:levelBytesPerRow];

Where levelWidth and levelHeight are the dimensions of the current mip level,
level is the index of the current mip level (the base level is index 0), and levelData
is a pointer to the mip level’s image data. levelBytesPerRow can be computed as the
length of the image data divided by the level’s height. When loading PVRTC data,
bytesPerRow can be set to 0.

The Sample App

The sample code for this chapter is in the 09-CompressedTextures directory.

The sample app includes a demonstration of all of the texture formats mentioned in this
chapter. Tapping the “Switch Textures” button brings up a menu that allows the user to
select among the various textures. The menu options for the ASTC options will not be
available if the device on which the app is running does not support ASTC compression.

Generally speaking, ASTC offers the best quality-to-size ratio on hardware where it is
available. The PVRTC format should generally be preferred when targeting devices with
the A7 processor.
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Figure 9.3: The sample app allows you to select among several compression formats
supported by Metal.
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Chapter 10

Translucency and Transparency

One of the topics we’ve handily avoided so far in our exploration of Metal is rendering
of materials that are not opaque. In this chapter, we’ll explore a couple of related tech-
niques for achieving transparency and translucency: alpha testing and alpha blending.

The sample scene for this chapter is a desert containing many palm trees and a few pools
of water. The leaves of the palm trees consist of a few polygons each, textured with a
partially-transparent texture, and the water is rendered as a translucent surface via alpha
blending, which we’ll discuss in detail below.

What is Alpha, Anyway?

Alpha is the opacity (or coverage) of a color value. The higher the alpha value, the more
opaque the color. An alpha value of 0 represents total transparency, while a value of
1 (or 100%) represents total opacity. When speaking in terms of fragment color, the al-
pha component indicates how much the scene behind the fragment shows through. See
(Glassner 2015) for a rigorous discussion of the fundamentals.
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Figure 10.1: The sample app demonstrates alpha testing and alpha blending

Alpha Testing

The first technique we’ll use to render partially-transparent surfaces is alpha testing.

Alpha testing allows us to determine whether a fragment should contribute to the color
stored in the renderbuffer, by comparing its opacity against a threshold (called the refer-
ence value). Alpha testing is used to make surfaces selectively transparent.

One common application of alpha testing is the rendering of foliage, where relatively few
polygons can be used to describe the shape of leaves, and the alpha channel of the leaf
texture can be used to determine which pixels are drawn and which are not.
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Figure 10.2: Alpha testing allows us to draw partially-transparent palm fronds

Alpha Testing in Metal

Alpha testing in Metal is implemented in the fragment function. The shader file contains
a global reference value (0.5 in the sample app), against which our alpha values will be
compared. The fragment function samples the diffuse texture of the palm tree, which has
an alpha value of 0 for the texels that should be transparent. The sampled color is then
used to decide whether the fragment should be visible.

The ‘discard_fragment’ function

In order to indicate to Metal that we don’t want to provide a color for a fragment, we
cannot simply set the returned alpha value to 0. If we did, the fragment depth would still
be written into the depth buffer, causing any geometry behind the “transparent” point to
be obscured.

Instead, we need to call a special function that avoids specifying a color value for the
fragment entirely: discard_fragment. Calling this function prevents Metal from writing
the computed depth and color values of the fragment into the framebuffer, which allows
the scene behind the fragment to show through.

The Texture Alpha Channel

To perform the per-fragment alpha test, we need a specially-constructed texture that
contains suitable coverage information in its alpha channel. The figure below shows the
palm leaf texture used in the sample app.
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Figure 10.3: The texture used to draw the palm fronds in the sample app. Transparent
portions of the image are not drawn.

Performing the Alpha Test

The implementation of alpha testing in the fragment shader is very straightforward.
Bringing together the techniques we just discussed, we test the sampled alpha value
against the threshold, and discard any fragments that fail the alpha test:

float4 textureColor = texture.sample(texSampler, vert.texCoords);

if (textureColor.a < kAlphaTestReferenceValue)
discard_fragment();

A Note on Performance

Using discard_fragment has performance implications. In particular, it prevents the
hardware from performing an optimization called early depth test (sometimes called early-
z).

Oftentimes, the hardware can determine whether a fragment will contribute to the ren-
derbuffer before calling the fragment function, since fragment depth is computed in the
rasterizer. This means that it can avoid shading blocks of fragments that are known to be
obscured by other geometry.

On the other hand, if a fragment is going to be shaded with a function that contains con-
ditional discard_fragment calls, this optimization cannot be applied, and the hardware
must invoke the shader for every potentially-visible fragment.

In the sample code for this chapter, we have separate fragment functions for geometry
that is rendered with the alpha test and without. The alpha testing function should only
be used on geometry that actually needs it, as overuse of discard_fragment can have a
strongly negative performance impact.
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A full explanation of early depth-testing is beyond the scope of this book, but Fabien
Giesen’s blog series (Giesen 2011) provides further details about both depth-testing and
many other topics related to the modern 3D rendering pipeline.

Alpha Blending

Another useful technique for implementing transparency is alpha blending.

Alpha blending is achieved by interpolating between the color already in the render-
buffer (the destination) and the fragment currently being shaded (the source). The exact
formula used depends on the desired effect, but for our current purposes we will use the
following equation:

cf = αs × cs + (1 − αs) × cd

where cs and cd are the RGB components of the source and destination colors, respec-
tively; αs is the source color’s opacity; and cf is the final blended color value for the frag-
ment.

Expressed in words, this formula says: we multiply the source color’s opacity by the
source color’s RGB components, producing the contribution of the fragment to the final
color. This is added to the additive inverse of the opacity multiplied by the color already
in the renderbuffer. This “blends” the two colors to create the new color that is written to
the renderbuffer.

Alpha Blending in Metal

In the sample project for this chapter, we use alpha blending to make the surface of the
water translucent. This effect is computationally cheap and not particularly convincing,
but it could be supplemented with cube map reflection or an animation that slides the
texture over the water surface or physically displaces it.

Enabling Blending in the Pipeline State

There are two basic approaches to blending in Metal: fixed-function and programmable.
We will discuss fixed-function blending in this section. Fixed-function blending consists
of setting properties on the color attachment descriptor of the render pipeline descriptor.
These properties determine how the color returned by the fragment function is combined
with the pixel’s existing color to produce the final color.

To make the next several steps more concise, we save a reference to the color attachment:
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MTLRenderPipelineColorAttachmentDescriptor *renderbufferAttachment =
pipelineDescriptor.colorAttachments[0];

To enable blending, set blendingEnabled to YES:

renderbufferAttachment.blendingEnabled = YES;

Next, we select the operation that is used to combine the weighted color and alpha com-
ponents. Here, we choose Add:

renderbufferAttachment.rgbBlendOperation = MTLBlendOperationAdd;
renderbufferAttachment.alphaBlendOperation = MTLBlendOperationAdd;

Now we need to specify the weighting factors for the source color and alpha. We select
the SourceAlpha factor, to match with the formula given above.

renderbufferAttachment.sourceRGBBlendFactor = MTLBlendFactorSourceAlpha;
renderbufferAttachment.sourceAlphaBlendFactor = MTLBlendFactorSourceAlpha;

Finally, we choose the weighting factors for the destination color and alpha. These are
the additive inverse of the factors for the source color, OneMinusSourceAlpha:

renderbufferAttachment.destinationRGBBlendFactor =
MTLBlendFactorOneMinusSourceAlpha;

renderbufferAttachment.destinationAlphaBlendFactor =
MTLBlendFactorOneMinusSourceAlpha;

The Alpha Blending Fragment Shader

The fragment shader returns the color it computes for its fragment. In previous chapters,
the alpha component of this color was insignificant, because blending was not enabled.
Now, we need to ensure that the alpha component returned by the shader represents the
desired opacity of the fragment. This value will be used as the “source” alpha value in
the blending equation configured on the rendering pipeline state.

In the sample code, we multiply the sampled diffuse texture color with the current vertex
color to get a source color for the fragment. Since the texture is opaque, the vertex color’s
alpha component becomes the opacity of the water. Passing this value as the alpha of
the fragment color’s return value produces alpha blending according to how the color
attachment was previously configured.
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Figure 10.4: Alpha blending allows the sandy desert show through the clear water sur-
face

Order-Dependent Blending versus Order-Independent Blending

When rendering translucent surfaces, order matters. In order for alpha blending to pro-
duce a correct image, translucent objects should be rendered after all opaque objects. Ad-
ditionally, they should be drawn back-to-front, relative to the camera. Since order is de-
pendent on the view position and orientation, objects need to be re-sorted every time
their relative order changes, often whenever the camera moves.

We avoid this problem entirely in the sample app by having only a single, convex,
translucent surface in the scene: the water. Other applications won’t have it so easy.

There has been much research in the last several years on ways to avoid this expensive
sorting step. One technique uses a so-called A-buffer (introduced by Carpenter in 1984
(Carpenter 1984)) to maintain a pair of color and depth values for the fragments that con-
tribute to each pixel. These fragments are then sorted and blended in a second pass.

More recently, research has placed an emphasis on the mathematics of alpha composit-
ing itself, in an attempt to derive an order-independent transparency solution. Refer to
McGuire and Bavoil’s paper (McGuire and Bavoil 2013) for advances in this technique.

The Sample App

The sample code for this chapter is in the 10-AlphaBlending directory. Pressing on the
screen moves the camera forward along its current heading, while panning left or right
changes the direction in which the camera heads.
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Chapter 11

Instanced Rendering

In this chapter, we will discuss an important technique for efficiently drawing many ob-
jects with a single draw call: instanced rendering. This technique helps you get the most
out of the GPU while keeping memory and CPU usage to a minimum.

The sample app for this chapter renders several dozen animated cows moving on top
of a randomly-generated terrain patch. Each cow has its own position, orientation, and
movement direction, all of which are updated every frame. We do all of this drawing
with only two draw calls. The app consumes only a few percent of the CPU on an A8
processor, but maxes out the GPU, drawing over 240,000 triangles per frame. Even with
this large load, such a device manages to render at an ideal 60 frames per second.

What is Instanced Rendering?

Virtual worlds frequently have many copies of certain elements in the scene: particles,
foliage, enemies, and so on. These elements are represented in memory by a single piece
of geometry (a mesh) and a set of attributes that are specific to the application. Instanced
rendering draws the same geometry multiple times, with each instance’s attributes used
to control where and how it appears.

Instanced rendering is also called “geometry instancing”, “instanced drawing”, or some-
times just “instancing”.
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Setting the Scene

The virtual scene for this chapter is a pastoral hillside with numerous roving bovines.
The terrain is uniquely generated each time the app runs, and every cow has its own
randomized path of motion.

Figure 11.1: Dozens of animated characters can be drawn efficiently with instanced
rendering. (Grass texture provided by Simon Murray of goodtextures.com)

Generating the Terrain

The features of the terrain are created by an algorithm called midpoint displacement, also
called the “diamond-square” algorithm. It is a technique that recursively subdivides the
edges of a patch of terrain and nudges them randomly up or down to produce natural-
looking hills. Since the focus of this chapter is instanced drawing and not terrain gen-
eration, refer to the sample source code if you are curious about this technique (see the
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MBETerrainMesh class). An interactive demonstration of the technique can be found on-
line (Boxley 2011). The original paper on the technique is (Miller 1986).

Loading the Model

We use the OBJ model loader from previous chapters to load the cow model. Once we
have an OBJ model in memory, we create an instance of MBEOBJMesh from the appropri-
ate group from the OBJ file.

Instanced Rendering

Instanced rendering is performed by issuing a draw call that specifies how many times
the geometry should be rendered. In order for each instance to have its own attributes,
we set a buffer containing per-instance data as one of the buffer arguments in the vertex
shader argument table. We also need to pass in a shared uniform buffer, which stores
the uniforms that are shared across all instances. Here is the complete argument table
configured for rendering the cow mesh:

[commandEncoder setVertexBuffer:cowMesh.vertexBuffer offset:0 atIndex:0];
[commandEncoder setVertexBuffer:sharedUniformBuffer offset:0 atIndex:1];
[commandEncoder setVertexBuffer:cowUniformBuffer offset:0 atIndex:2];

Now let’s look specifically at how we lay out the uniforms in memory.

Storing Per-Instance Uniforms

For each instance, we need a unique model matrix, and a corresponding normal matrix.
Recall that the normal matrix is used to transform the normals of the mesh into world
space. We also want to store the projection matrix by itself in a shared uniform buffer.
We split the Uniforms struct into two structs:

typedef struct
{

matrix_float4x4 viewProjectionMatrix;
} Uniforms;

typedef struct
{

matrix_float4x4 modelMatrix;
matrix_float3x3 normalMatrix;

} PerInstanceUniforms;
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The shared uniforms are stored in a Metal buffer that can accommodate a single instance
of type Uniforms. The per-instance uniforms buffer has room for one instance of
PerInstanceUniforms per cow we want to render:

cowUniformBuffer = [device newBufferWithLength:sizeof(PerInstanceUniforms) *
MBECowCount
options:MTLResourceOptionCPUCacheModeDefault];

Updating Per-Instance Uniforms

Because we want the cows to move, we store a few simple attributes in a data model
called MBECow. Each frame, we update these values to move the cow to its new position
and rotate it so it is aligned with its direction of travel.

Once a cow object is up-to-date, we can generate the appropriate matrices for each cow
and write them into the per-instance buffer, for use with the next draw call:

PerInstanceUniforms uniforms;
uniforms.modelMatrix = matrix_multiply(translation, rotation);
uniforms.normalMatrix = matrix_upper_left3x3(uniforms.modelMatrix);
NSInteger instanceUniformOffset = sizeof(PerInstanceUniforms) * instanceIndex;
memcpy([self.cowUniformBuffer contents] + instanceUniformOffset, &uniforms,

sizeof(PerInstanceUniforms));

Issuing the Draw Call

To issue the instanced drawing call, we use the -drawIndexedPrimitive: method on
the render command encoder that has an instanceCount: parameter. Here, we pass the
total number of instances:

[commandEncoder drawIndexedPrimitives:MTLPrimitiveTypeTriangle
indexCount:indexCount
indexType:MTLIndexTypeUInt16

indexBuffer:cowMesh.indexBuffer
indexBufferOffset:0

instanceCount:MBECowCount];

To execute this draw call, the GPU will draw the mesh many times, reusing the geometry
each time. However, we need a way of getting the appropriate set of matrices inside the
vertex shader so we can transform each cow to its position in the world. To do that, lets
look at how to get the instance ID from inside the vertex shader.
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Accessing Per-Instance Data in Shaders

To index into the per-instance uniform buffers, we add a vertex shader parameter with
the instance_id attribute. This tells Metal that we want it to pass us a parameter that
represents the index of the instance that is currently being drawn. We can then access the
per-instance uniforms array at the correct offset and extract the appropriate matrices:

vertex ProjectedVertex vertex_project(device InVertex *vertices [[buffer(0)]],
constant Uniforms &uniforms [[buffer(1)]],
constant PerInstanceUniforms *perInstanceUniforms [[buffer(2)]],
ushort vid [[vertex_id]],
ushort iid [[instance_id]])

{
float4x4 instanceModelMatrix = perInstanceUniforms[iid].modelMatrix;
float3x3 instanceNormalMatrix = perInstanceUniforms[iid].normalMatrix;

The rest of the vertex shader is straightforward. It projects the vertex, transforms the
normal, and passes through the texture coordinates.

Going Further

You can store any kind of data you want in the per-instance uniform structure. For ex-
ample, you could pass in a color for each instance, and use it to tint each object uniquely.
You could include a texture index, and index into a texture array to give a completely dif-
ferent visual appearance to certain instances. You can also multiply a scaling matrix into
the model transformation to give each instance a different physical size. Essentially any
characteristic (except the mesh topology itself) can be varied to create a unique appear-
ance for each instance.

The Sample App

The sample code for this chapter is in the 11-InstancedDrawing directory.

You can move around in the sample app by holding your finger on the screen to move
forward. Turn the camera by panning from left or right.



106 Chapter 11. Instanced Rendering



Chapter 12

Rendering Text

In this chapter, we will discuss a method for rendering high-fidelity text with Metal. It’s
easy to overlook text rendering when thinking about 3D graphics. However, very few
games or applications can get by without displaying any text, so it’s important to con-
sider how we can best use the GPU to incorporate text into our Metal apps.

Figure 12.1: Text rendered by the sample app, using the signed-distance field technique

The Structure and Interpretation of Fonts

We begin the process of drawing text by selecting a font. Fonts are collections of glyphs,
which are the graphical representation of characters or portions of characters. In modern
font formats, glyphs are represented as piecewise curves, specifically line segments and
quadratic Bezier curves.
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Figure 12.2: The ‘g’ glyph from Verdana, showing how glyphs are constructed of piece-
wise quadratic Beziér curves

Drawing a string of text consists of at least two distinct phases. First, the text layout engine
determines which glyphs will be used to represent the string and how they’ll be posi-
tioned relative to one another. Then, the rendering engine is responsible for turning the
abstract description of the glyphs into text on the screen.

Approaches to Real-Time Text Rendering

There are numerous ways you might go about rendering text on iOS. You are probably
familiar with UIKit controls such as UILabel and UITextField. These UI elements are
backed by a powerful framework called Core Text. Core Text is a Unicode text layout
engine that integrates tightly with Quartz 2D (Core Graphics) to lay out and render text.

Text layout is an enormously complicated subject that must account for different scripts,
writing directions, and typographic conventions. We would never want to reinvent this
functionality ourselves, so we’ll let Core Text do a lot of the heavy lifting as we settle in
on our solution for real-time text rendering.

Let’s take a brief tour through common ways of drawing text in the context of real-time
3D graphics.

Dynamic Rasterization

One of the most flexible approaches to text rendering is dynamic rasterization, in which
strings are rasterized on the CPU, and the resulting bitmap is uploaded as a texture to
the GPU for drawing. This is the approach taken by libraries such as stb_truetype (Bar-
rett 2014).
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The disadvantage of dynamic rasterization is the computational cost of redrawing the
glyphs whenever the text string changes. Even though much of the cost of text rendering
occurs in the layout phase, rasterizing glyphs is nontrivial in its demand on the CPU,
and there is no extant GPU implementation of font rasterization on iOS. This technique
also requires an amount of texture memory proportional to the font size and the length
of the string being rendered. Finally, when magnified, rasterized text tends to become
blurry or blocky, depending on the magnification filter.

Font Atlases

Many applications that use the GPU to draw text prefer to render all possible glyphs up-
front rather than drawing them dynamically. This approach trades off texture memory
for the computational cost of rasterizing glyphs on-demand. In order to minimize the
amount of texture memory required by a font, the glyphs are packed into a single rectan-
gular texture, called an atlas. The figure below illustrates such a texture.

Figure 12.3: A font atlas

An ancillary data structure stores the texture coordinates describing the bounding rect-
angle of each glyph. When drawing a string, the application generates a mesh with the
appropriate positions and texture coordinates of the string’s constituent glyphs.
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Figure 12.4: A pair of triangles are generated for each glyph in the text string

One disadvantage of font atlases is that they consume a sizable amount of memory even
when many of the glyphs they contain are not used at runtime.

Like dynamic rasterization, text rendered with an atlas texture suffers from a loss of fi-
delity upon magnification. Here, the problem may be even worse, since the glyphs are
often drawn smaller in order to pack an entire font into one texture.

In the next section, we will seek to rectify some of the issues with naïve atlas-based text
rendering.

Signed-Distance Fields

The approach we will explore in depth uses a signed-distance field, which is a precom-
puted representation of a font atlas that stores the glyph outlines implicitly. Specifically,
the texel values of a signed-distance field texture correspond to the distance of the texel
to the nearest glyph edge, where texels outside the glyph take on negative values.
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Figure 12.5: The signed-distance field generated from a font atlas. The brightest pixels
are the farthest inside.

In order to store a signed-distance field in a texture, it must be scaled and quantized to
match the pixel format. Our sample project uses a single-channel 8-bit texture, consum-
ing one byte per pixel. By this construction, texels that fall exactly on the edge of a glyph
have a value of 127, or 50%.

In its simplest incarnation, signed-distance field rendering can be done with fixed-
function alpha testing. By discarding all fragments whose value is less than 50%, only
those pixels inside the glyph will be rendered. Unfortunately, this has the effect of pro-
ducing “wiggles” along the edges of the glyph, since the downsampled and quantized
distance texture does not capture adequate detail to perfectly recreate the ideal outline.

An improvement to the alpha test technique is to use a pixel shader to interpolate be-
tween the inside and outside of the glyph, thus smoothing out the wiggly discontinuity.
This is described in detail below.

Signed-distance field rendering was brought into the mainstream by Chris Green of
Valve (Green 2007) describing the use of the technology in the hit game Team Fortress
2. Our implementation will closely follow the scheme laid out in Green’s paper.

Signed-Distance Field Rendering in Metal

In this section we will describe in detail a method for achieving smooth text rendering on
the GPU with Metal.
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Generating a Font Atlas Texture

The first step is to render all of the available glyphs in our chosen font into an atlas. In
the sample code, an optimal packing is not used; rather, the glyphs are simply laid out
left to right, wrapping lines from top to bottom in a greedy fashion. This simplifies the
implementation greatly, at the cost of some wasted space.

The sample code constructs a font atlas from a UIFont by determining the maximum size
of the selected font whose glyphs will fit entirely within the bitmap used to construct the
atlas (4096 × 4096 pixels). It then uses Core Text to retrieve the glyph outlines from the
font and render them, without antialiasing, into the atlas image.

As the font atlas is being drawn, the implementation also stores the origin and extent
(i.e., the texture coordinates) of each glyph in a separate array. This array is used during
rendering to map from the laid-out glyphs to their respective area on the atlas texture.

Generating a Signed-Distance Field

The above procedure produces a binary image of the font at a fairly high resolution. That
is, pixels that fall inside of a glyph are all the way “on” (255), and pixels that are outside
a glyph are all the way “off” (0). We now need to perform a signed-distance transform
on this bitmap to produce a signed-distance field representation of the font atlas, which
we will use for rendering.

A Brute Force Approach

Generating a signed-distance field entails finding the distance from each texel to the clos-
est glyph edge. Some implementations, such as GLyphy (Esfahbod 2014), perform this
calculation directly against the piecewise curve representation of the glyphs. This ap-
proach can have spectacular fidelity, but the implementation is complicated and fraught
with edge cases.

As we have chosen to generate a bitmap representation of the font, we could simply it-
erate over the neighborhood of each texel, performing a minimizing search as we en-
counter texels on the other side of the edge. To even approach tractability, this requires
that we choose a reasonably-sized area in which to conduct our search.

A reasonable heuristic is half the average stroke width of the font. For example, in a font
for which a typical stroke is 20 pixels wide, texels that are so far inside the glyph that
they have a distance of greater than 10 are already going to be clamped to the maximum
value of “insideness” during rendering. Similarly, texels at a distance of more than 10
outside the glyph are unlikely candidates for influencing the way the glyph is rendered.
Therefore, we would conduct a search on the 10 x 10 neighborhood around each texel.
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According to Green, the brute-force approach was suitably fast for creating distance
fields for text and vector artwork on the class of workstations used in the production
of TF2. However, since there has been so much research into signed-distance field gen-
eration, let’s take a look at a slightly better approach that will allow us to generate them
fairly quickly, even on mobile hardware.

A Better Approach: Dead Reckoning

Signed-distance fields have broad applicability, and have therefore been the subject of
much research. G. J. Grevera, building on a venerable algorithm known as the cham-
fer distance algorithm, constructed a more precise heuristic known as “dead reckoning”
(Grevera 2004). In essence, the algorithm performs two passes over the source image,
first propagating the minimal distance down and to the right, then propagating the min-
imal distances found in the first pass back up and to the left. At each step, the distance
value is determined as the minimum distance value over some mask surrounding the
center texel, plus the distance along the vector to the nearest previously-discovered edge.

Without going into all the details of this algorithm, it is worth noting that it is drastically
faster than the brute-force approach. Across both passes, dead reckoning consults a
neighborhood of just 3x3 texels, far fewer than a brute-force algorithm of similar accu-
racy. Although we have not implemented it with a compute shader, we strongly suspect
it could be made faster still with a GPU-based implementation.

Using Core Text for Layout

Once we have the signed-distance field representation of a font, we need a way to render
its glyphs on the screen. The first part of this process is, again, using the Core Text layout
engine to tell us which glyphs should be rendered, and how they should be positioned.
We use a CTFramesetter object to lay out the text in a chosen rectangle. The frameset-
ting process produces an array of CTLine objects, each containing series of glyphs. You
should consult the Core Text reference for additional details on these classes.

To construct a text mesh for rendering with Metal, we enumerate the glyphs provided
by the Core Text framesetter, which gives us their screen-space coordinates and an index
into the table of texture coordinates we constructed earlier when building the font atlas
texture. These two pieces of data allow us to create an indexed triangle mesh represent-
ing the text string. This mesh can then be rendered in the usual fashion, with a fragment
shader doing the heavy lifting of transforming from the signed-distance field texture to
an appropriate color for each pixel.
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The Orthographic Projection

When drawing text onto the screen, we use an orthographic, or parallel projection. This
kind of projection flattens the mesh to the plane of the screen without introducing the
foreshortening inherent in a perspective projection.

When rendering UI elements, it is convenient to select an orthographic projection whose
extents match the dimensions of the view. Therefore, the orthographic projection used
by the sample application uses (0, 0) as the upper-left corner of the screen and the
drawable width and height of the screen, in pixels, as the bottom-right corner, matching
UIKit’s convention.

Mathematically, this transformation is represented by the following matrix:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
r−l 0 0 r+l

l−r

0 2
t−b 0 t+b

b−t

0 0 1
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n
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0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here l, r, t, b, n, and f are the left, right, top, bottom, near and far clipping plane values.
In our implementation the near and far planes are assumed to sit at z = 0 and z = 1,
respectively.

The Vertex and Fragment Functions

The vertex function for drawing text is very straightforward; it looks exactly like vertex
functions we’ve used in the past. Each vertex of the text mesh is transformed by a model
matrix (which can be used to position and scale the text) and a combined view-projection
matrix, which is simply the orthographic projection matrix discussed above.

The fragment function, on the other hand, is a little more involved. Since we are using
the signed-distance field as more of a look-up table than a texture, we need to transform
the sampled texel from the field into a color value that varies based on the proximity of
the pixel to the corresponding glyph’s edge.

We apply antialiasing at the edges of the glyphs by interpolating from opaque to translu-
cent in a narrow band around the edge. The width of this band is computed per-pixel by
finding the length of the gradient of the distance field using the built-in dfdx and dfdy
functions. We then use the smoothstep function, which transitions from 0 to 1 across
the width of this smoothed edge, using the sampled distance value itself as the final pa-
rameter. This produces an edge band that is roughly one pixel wide, regardless of how
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much the text is scaled up or down. This refinement on Green’s original approach is due
to Gustavson (Gustavson 2012).

Here is the complete fragment function for rendering a glyph from a signed-distance
field representation:

float edgeDistance = 0.5;
float dist = texture.sample(samp, vert.texCoords).r;
float edgeWidth = 0.7 * length(float2(dfdx(dist), dfdy(dist)));
float opacity = smoothstep(edgeDistance - edgeWidth,

edgeDistance + edgeWidth, dist);
return half4(textColor.r, textColor.g, textColor.b, opacity);

Note that we return a color that has an alpha component, so the pipeline state we use
should have alpha blending enabled in order for the text to properly blend with the ge-
ometry behind it. This also implies that the text should be drawn after the rest of the
scene geometry.

The Sample App

The sample code for this chapter is in the 12-TextRendering directory.

The sample app for this chapter renders a paragraph of text that can be zoomed and
panned in real-time. Interactivity is achieved with a pair of UIGestureRecognizers. No-
tice how the edges of the glyphs remain quite sharp even under extreme magnification,
in contrast to the way a pre-rasterized bitmap texture would become jagged or blurry
under magnification.
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Chapter 13

Introduction to Data-Parallel
Programming

This chapter is an introduction to topics in data-parallel programming, also called compute
programming when done on the GPU (in contrast to graphics programming, which is
what we normally do with GPUs). We will cover the basics of setting up the compute
pipeline and executing kernel functions on large sets of data in parallel. This chapter
serves as set-up for the following chapter, which demonstrates how to do image process-
ing on the GPU with compute kernels.

Kernel Functions

Throughout this book, we have used vertex and fragment functions extensively. In
this chapter, we introduce a new kind of shader function: the kernel function. Kernel
functions allow us to build massively-parallel programs that operate on many pieces of
data at once. We will use the terms “kernel function,” “compute kernel,” and “compute
shader” interchangeably.

A kernel function is identified in shader source by prefixing it with the kernel qualifier,
just as we prefix other types of functions with vertex or fragment. One difference be-
tween these types of functions is that kernel functions must return void. This is because
kernel functions operate on buffers and textures rather than feeding data to additional
pipeline stages, as vertex and fragment functions do.

The following snippet is an example of a kernel function signature. The new attributes
introduced in this function signature will be discussed in detail later on.

117
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kernel void kernel_function(
texture2d<float, access::read> inTexture [[texture(0)]],
texture2d<float, access::write> outTexture [[texture(1)]],
uint2 gid [[thread_position_in_grid]]);

The Compute Pipeline

Building the compute pipeline is similar to building the render pipeline for our work
with 3D rendering. Instead of a renderer class, we create a context object to hold onto
various Metal objects.

The Context Class

The context wraps up the device, library, and command queue, since these are long-lived
objects that will be referenced by the various kernel classes we create.

The context class has a very simple interface. Calling the +newContext factory method
returns a context with the system default device.

@interface MBEContext : NSObject

@property (strong) id<MTLDevice> device;
@property (strong) id<MTLLibrary> library;
@property (strong) id<MTLCommandQueue> commandQueue;

+ (instancetype)newContext;

@end

There is one serial command queue per context. This allows us to serialize work items,
such as image filters that may have data dependencies between them.

Creating a Pipeline State

Building a pipeline state for executing kernel functions is a little bit simpler than creat-
ing a rendering pipeline. There is no equivalent to the MTLRenderPipelineDescriptor
for compute pipelines, because the only configurable part of the compute pipeline is its
associated kernel function.

As with vertex and fragment functions, kernel functions are retrieved by name from a
library:
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[library newFunctionWithName:@"kernel_function"];

The compute pipeline is then created by asking for a compute pipeline state object from
the device. If an error occurs when compiling the kernel function for the target hardware,
the error will be assigned to the error parameter, and nil will be returned.

id<MTLComputePipelineState> pipeline = [device
newComputePipelineStateWithFunction:kernelFunction error:&error];

Creating a Command Buffer and Command Encoder

Just as we use a render command encoder to encode draw calls into a command
buffer, we use a new type of command encoder to execute kernel functions: the
MTLComputeCommandEncoder.

id<MTLCommandBuffer> commandBuffer = [context.commandQueue commandBuffer];
id<MTLComputeCommandEncoder> commandEncoder =

[commandBuffer computeCommandEncoder];

Before sending work to the GPU, though, we need to understand how to configure the
compute command encoder’s argument table and how to describe the work we want the
GPU to do.

The Argument Table

We’ve used the argument table previously to specify which buffers, textures, and sam-
pler states are bound to the parameters of our vertex and fragment functions.

For example, we configured the arguments of our fragment shaders by calling the
-setFragmentTexture:atIndex: method on a render command encoder. Recall that the
index parameter matches up the entry in the argument table to the parameter with the
corresponding attribute (e.g., [[texture(0)]]) in the signature of the fragment function.

There is a similar method for setting up the argument table for compute encoders:
-setTexture:atIndex:. We will use this method to set up the argument table when
preparing to execute kernel functions.

Threadgroups

Threadgroups are a central concept in Metal kernel function programming. In order
to execute in parallel, each workload must be broken apart into chunks, called thread-
groups, that can be further divided and assigned to a pool of threads on the GPU.
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In order to operate efficiently, the GPU does not schedule individual threads. Instead,
they are scheduled in sets (sometimes called “warps” or “wavefronts”, though the Metal
documentation does not use these terms). The thread execution width represents the size
of this unit of execution. This is the number of threads that are actually scheduled to run
concurrently on the GPU. You can query this value from a command encoder using its
threadExecutionWidth property. It is likely to be a small power of two, such as 32 or
64.

We can also determine the upper bound of our threadgroup size by quering the
maxTotalThreadsPerThreadgroup. This number will always be a multiple of the thread
execution width. For example, on iPhone 6 it is 512.

To make the most efficient use of the GPU, the total number of items in a threadgroup
should be a multiple of the thread execution width, and must be lower than the maxi-
mum total threads per threadgroup. This informs how we choose to subdivide the input
data for fastest and most convenient execution.

Threadgroups do not have to be one-dimensional. It is often convenient for the dimen-
sion of the threadgroup to match the dimension of the data being operated on. For exam-
ple, when operating on a 2D image, each chunk will typically be a rectangular region of
the source texture. The figure below shows how you might choose to subdivide a texture
into threadgroups.

Figure 13.1: An image to be processed is divided up into a number of threadgroups,
represented here by white squares.

In order to tell Metal the dimensions of each threadgroup and how many threadgroups
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should be executed in a given compute call, we create a pair of MTLSize structs:

MTLSize threadgroupCounts = MTLSizeMake(8, 8, 1);
MTLSize threadgroups = MTLSizeMake([texture width] / threadgroupCounts.width,

[texture height] / threadgroupCounts.height,
1);

Here, we somewhat arbitrarily choose a threadgroup size of eight rows by eight columns,
or a total of 64 items per threadgroup. We make the assumption that textures being pro-
cessed by this code will have dimensions that are multiples of 8, which is often a safe bet.
The total threadgroup size is an even multiple of the target hardware’s thread execution
width, and is safely below the maximum total thread count. If the texture dimensions
were not evenly divisible by our threadgroup size, we would need to take measures in
our kernel function not to read or write outside the bounds of our textures.

Now that we have determined the size of our threadgroups and how many we need to
execute, we are ready to put the GPU to work.

Dispatching Threadgroups for Execution

Encoding a command to execute a kernel function on a set of data is called dis-
patching. Once we have a reference to a compute command encoder, we can call its
-dispatchThreadgroups:threadsPerThreadgroup: method to encode the request for
execution, passing the MTLSize structs we computed previously.

[commandEncoder dispatchThreadgroups:threadgroups
threadsPerThreadgroup:threadgroupCounts];

Once we are done dispatching, we tell the command encoder to endEncoding, then
commit the corresponding command buffer. We can then use the -waitUntilCompleted
method on the command buffer to block until the shader is done running on the GPU.
The kernel function will be executed once per data item (e.g., once per texel in the source
texture).

Conclusion

In this brief chapter, we have laid the groundwork for a discussion of high-performance
image filtering in Metal, as well as other applications of data-parallel programming. In
the next chapter, we will apply data-parallel programming in Metal to a couple of inter-
esting problems in image processing.
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Chapter 14

Fundamentals of Image Processing

In this chapter, we will start exploring the world of image processing with the Metal
shading language. We will create a framework capable of representing chains of image
filters, then write a pair of image filters that will allow us to adjust the saturation and
blur of an image. The end result will be an interactive app that allows you to control the
image filter parameters in real-time.

Image processing is one of the chief applications of data-parallel programming. In many
cases, an image filter only needs to consult one pixel or a small neighborhood of pixels
in a source image to compute the value of each output pixel. When this is the case, the
work of the image filter can be done in a parallel fashion. This is a perfect fit for modern
GPU architecture, which uses many small cores to work on many pieces of data at once.

A Look Ahead

To motivate this chapter a little further, here is a snippet from the sample project. It il-
lustrates how to succinctly create and chain together the desaturation and blur filters
controlled by a user interface that can be dynamically adjusted.

context = [MBEContext newContext];
imageProvider = [MBEMainBundleTextureProvider

textureProviderWithImageNamed:@"mandrill"
context:context];

desaturateFilter = [MBESaturationAdjustmentFilter
filterWithSaturationFactor:0.75
context:context];

123
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desaturateFilter.provider = self.imageProvider;
blurFilter = [MBEGaussianBlur2DFilter filterWithRadius:0.0

context:context];
blurFilter.provider = desaturateFilter;
imageView.image = [UIImage imageWithMTLTexture:blurFilter.texture];

Figure 14.1: The sample application UI, allowing filter adjustment in real-time.

A Framework for Image Processing

Now that we have an idea of what we want the interface to our image processing frame-
work to look like, we can talk about the practicalities of building such a framework.
Much of the architecture of this framework was inspired by (Jargstorff 2004).

Texture Providers and Consumers

Each filter will the have the ability to configure its compute pipeline with its input and
output textures and execute its kernel function.

Since we will be operating on images in the form of textures, we need an abstract way
to refer to objects that produce and consume textures. Filters, for example, consume and
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produce textures, and we will also need a class for generating textures from images in
the application bundle.

We abstract the idea of texture production with a protocol named MBETextureProvider:

@protocol MBETextureProvider <NSObject>
@property (nonatomic, readonly) id<MTLTexture> texture;
@end

This simple interface gives us a way to (synchronously) request a texture from a texture
provider. It might cause an image filter to perform its filtering procedure, or load an
image from disk. The important point is that we know we can retrieve a texture from
any object that conforms to MBETextureProvider.

On the other hand, the MBETextureConsumer protocol allows us to tell an object which
texture provider it should consume textures from:

@protocol MBETextureConsumer <NSObject>
@property (nonatomic, strong) id<MBETextureProvider> provider;
@end

When a texture consumer wants to operate on a texture, it requests the texture from its
provider and operates on it.

An Image Filter Base Class

Abstractly, an image filter transforms one texture into another by performing an arbi-
trary operation on it. Our MBEImageFilter class does much of the work necessary to
invoke a compute shader to produce one texture from another.

The image filter base class conforms to the texture provider and texture consumer pro-
tocols just discussed. Having filters behave as both texture providers and texture con-
sumers allows us to chain filters together to perform multiple operations in sequence.
Because of the serial nature of the command queue managed by the image context, it is
guaranteed that each filter completes its work before its successor is allowed to execute.

Here is the relevant portion of the MBEImageFilter class’ interface:

@interface MBEImageFilter : NSObject <MBETextureProvider, MBETextureConsumer>
@property (nonatomic, strong) MBEContext *context;
@property (nonatomic, strong) id<MTLComputePipelineState> pipeline;
@property (nonatomic, strong) id<MTLTexture> internalTexture;
@property (nonatomic, assign, getter=isDirty) BOOL dirty;
- (instancetype)initWithFunctionName:(NSString *)functionName

context:(MBEContext *)context;
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- (void)configureArgumentTableWithCommandEncoder:
(id<MTLComputeCommandEncoder>)commandEncoder;

The filter must be instantiated with a function name and a context. These are used to
create a compute pipeline state, which is then stored in the pipeline property.

The image filter maintains an internal texture that it uses as the output texture of its ker-
nel function. This is so it can store the result of its computation and provide it to other
filters. It can also be drawn to the screen or converted to an image.

Image filters may have any number of parameters that affect how they carry out their
computation. When one of them changes, the internal texture is invalidated and the
kernel function must be re-executed. The dirty flag allows filter subclasses to indicate
when this is necessary. A filter will only be executed when its dirty flag is set to YES,
which is done inside custom property setters.

The image filter base class contains an -applyFilter method that is invoked when it is
asked to provide its output texture and it is currently dirty. This method creates a com-
mand buffer and command encoder, and dispatches its kernel function as discussed in
the previous chapter.

Now that we have the necessary machinery in place, let’s talk about a couple of example
filters that will put it to use.

Building a Saturation Adjustment Filter

The first filter we will build is a saturation adjustment filter. The filter will have a config-
urable saturation factor that determines how much the filter should desaturate the input
image. This factor can range from 0 to 1. When the saturation factor is 0, the output im-
age will be a grayscale version of the input. For values between 0 and 1, the filter will
produce an image in which the colors are more or less muted, by interpolating between
the grayscale image and the input image.
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Figure 14.2: A sequence of images showing how increasing the saturation factor of the
filter from 0 to 1 increases image saturation

Calculating Brightness from RGB

Every RGB color value has a corresponding brightness value, which we will represent by
the symbol Y ′:

Y ′ = 0.299R + 0.587G + 0.114B

Note that the factors in the formula sum to 1. Their values are based on human percep-
tion of the intensity of different primary colors of light: the human eye is most sensitive
to green light, followed by red light, and finally blue light. (These values are published
as part of ITU-R Recommendation BT.601-7 (International Telecom Union 2011), section
2.5.1).

Replacing each color in an image with a gray pixel of its corresponding brightness results
in a completely desaturated image that has the same perceptual brightness as the origi-
nal image. This will be the task of our desaturation kernel function, which is presented
below.

The Desaturation Kernel

To support passing the saturation factor to our kernel function, we create a single-
membered struct called AdjustSaturationUniforms:

struct AdjustSaturationUniforms
{

float saturationFactor;
};
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The kernel function itself takes an input texture, an output texture, a reference to the uni-
form struct, and a 2D vector of integers with an attribute we didn’t bother describing in
detail in the previous chapter: thread_position_in_grid.

Recall from the previous chapter that we dispatch a two-dimensional set of thread-
groups whose size is calculated from the dimensions of the source texture. The
thread_position_in_grid attribute tells Metal to generate a coordinate vector that tells
us where we are in the 2D grid that spans the entire dispatched set of work items, i.e. our
current coordinates in the source texture.

We specify the intended access pattern for each texture parameter: access::read for the
input texture, and access::write for the output texture. This restricts the set of func-
tions we can call on these parameters.

kernel void adjust_saturation(texture2d<float, access::read> inTexture
[[texture(0)]],
texture2d<float, access::write> outTexture [[texture(1)]],
constant AdjustSaturationUniforms &uniforms [[buffer(0)]],
uint2 gid [[thread_position_in_grid]])

{
float4 inColor = inTexture.read(gid);
float value = dot(inColor.rgb, float3(0.299, 0.587, 0.114));
float4 grayColor(value, value, value, 1.0);
float4 outColor = mix(grayColor, inColor, uniforms.saturationFactor);
outTexture.write(outColor, gid);

}

We read the source texel’s color and calculate its brightness value based on the formula
presented earlier. The dot function allows us to do this more succinctly than doing the
three multiplications and two additions separately. We then generate a new color by
duplicating the brightness into the RGB components, which makes a shade of gray.

To calculate the partially-desaturated output color, we use a function from the Metal
standard library: mix, which takes two colors and a factor between 0 and 1. If the factor
is 0, the first color is returned, and if it is 1, the second color is returned. In between, it
blends them together using linear interpolation.

Finally, we write the resulting desaturated color into the output texture. Note that we
previously assumed that the input and output textures had the same size, and that the
dimensions of both were a multiple of our threadgroup size. If this were not the case, we
would need to guard against reading outside the bounds of the input writing outside the
bounds of the output texture.
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The Saturation Adjustment Class

In order to drive the saturation adjustment kernel, we need to extend the image filter
base class. This subclass is named MBESaturationAdjustmentFilter:

@interface MBESaturationAdjustmentFilter : MBEImageFilter
@property (nonatomic, assign) float saturationFactor;
+ (instancetype)filterWithSaturationFactor:(float)saturation

context:(MBEContext *)context;
@end

This subclass calls the initializer with the name of the desaturation kernel function and
passes through a reference to the context it should operate on.

Setting the saturationFactor property causes the filter to set its dirty property, which
causes the desaturated image to be re-computed lazily when its texture property is re-
quested.

The subclass’ implementation of -configureArgumentTableWithCommandEncoder: con-
sists of boilerplate to copy the saturation factor into a Metal buffer. It is not shown here.

We now have a complete filter class and kernel function for performing image desatura-
tion.

Blur

The next type of image filter we will look at is the blur filter.

Blurring an image involves mixing the color of each texel with the colors of adjacent tex-
els. Mathematically, a blur filter is a weighted average of a neighborhood of texels (such
an operation is called a convolution). The size of the neighborhood is called the radius of
the filter. A small radius will average fewer texels together and produce a less blurry
image.

Box Blur

The simplest kind of blur is a box blur. The box blur gives equal weight to all the nearby
texels, computing their average. Box blurs are easy to compute, but can produce ugly
artifacts, since they give undue weight to noise.

Suppose we choose a box blur of radius 1. Then each texel in the output image will be
the average of the input texel and its 8 nearest neighbors. Each of the 9 colors is given an
equal weight of 1/9.
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Figure 14.3: A box blur filter averages the neighborhood around each texel.

Box blurs are easy, but they don’t produce very satisfying results. Instead, we will use a
somewhat more sophisticated blur filter, the Gaussian blur.

Gaussian Blur

In contrast to the box blur, the Gaussian blur gives unequal weights to the neighboring
texels, giving more weight to the texels that are closer, and less weight to those that are
farther away. In fact, the weights are computed according to a 2D normal distribution
about the current texel:

Gσ(x, y) = 1√
2πσ2 e− x2+y2

2σ2

where x and y are the distances along the x and y axis, respectively, between the texel
being processed and its neighbor. σ is the standard deviation of the distribution and is
equal to half the radius by default.

Figure 14.4: The Gaussian blur filter. Increasing the filter radius creates a smoother im-
age. The maximum radius shown here is 7.
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The Blur Shader

Computing the blur weights for a Gaussian filter is expensive to do in a kernel function,
especially for a filter with a large radius. Because of this, we will precompute the table
of weights and provide it to the Gaussian blur kernel function as a texture. This texture
has a pixel format of MTLPixelFormatR32Float, which is a single channel 32-bit floating-
point format. Each texel holds a weight between 0 and 1, and all of the weights sum up
to 1.

Inside the kernel function, we iterate over the neighborhood of the current texel, reading
each texel and its corresponding weight from the look-up table. We then add the
weighted color to an accumulated value. Once we have finished adding up all the
weighted color values, we write the final color to the output texture.

kernel void gaussian_blur_2d(texture2d<float, access::read> inTexture
[[texture(0)]],
texture2d<float, access::write> outTexture [[texture(1)]],
texture2d<float, access::read> weights [[texture(2)]],
uint2 gid [[thread_position_in_grid]])

{
int size = blurKernel.get_width();
int radius = size / 2;

float4 accumColor(0, 0, 0, 0);
for (int j = 0; j < size; ++j)
{

for (int i = 0; i < size; ++i)
{

uint2 kernelIndex(i, j);
uint2 textureIndex(gid.x + (i - radius), gid.y + (j - radius));
float4 color = inTexture.read(textureIndex).rgba;
float4 weight = weights.read(kernelIndex).rrrr;
accumColor += weight * color;

}
}

outTexture.write(float4(accumColor.rgb, 1), gid);
}
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The Filter Class

The blur filter class, MBEGaussianBlur2DFilter derives from the image filter base class.
Its implementation of -configureArgumentTableWithCommandEncoder: lazily gener-
ates the blur weights and sets the look-up table texture on the command encoder as the
third parameter (argument table index 2).

- (void)configureArgumentTableWithCommandEncoder:
(id<MTLComputeCommandEncoder>)commandEncoder

{
if (!self.blurWeightTexture)
{

[self generateBlurWeightTexture];
}
[commandEncoder setTexture:self.blurWeightTexture atIndex:2];

}

The -generateBlurWeightTexture method uses the 2D standard distribution formula
above to calculate a weight matrix of the appropriate size and copy the values into a
Metal texture.

This completes our implementation of the Gaussian blur filter class and shader. Now we
need to discuss how we chain filters together and get the final image to the screen.

Chaining Image Filters

Consider again the code from the beginning of the chapter:

context = [MBEContext newContext];
imageProvider = [MBEMainBundleTextureProvider

textureProviderWithImageNamed:@"mandrill"
context:context];

desaturateFilter = [MBESaturationAdjustmentFilter
filterWithSaturationFactor:0.75
context:context];

desaturateFilter.provider = self.imageProvider;
blurFilter = [MBEGaussianBlur2DFilter filterWithRadius:0.0

context:context];
blurFilter.provider = desaturateFilter;
imageView.image = [UIImage imageWithMTLTexture:blurFilter.texture];
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The main bundle image provider is a utility for loading images into Metal textures and
acts as the beginning of the chain. It is set as the texture provider for the desaturate filter,
which in turn is set as the texture provider of the blur filter.

Requesting the blur filter’s texture is actually what sets the image filtering process into
motion. This causes the blur filter to request the desaturation filter’s texture, which in
turn causes the desaturation kernel to be dispatched synchronously. Once it is complete,
the blur filter takes the desaturated texture as input and dispatches its own kernel func-
tion.

Now that we have a filtered image, we could use it to render a textured quad (or other
surface) with Metal. Suppose we want to display it with UIKit, though? How do we
do the opposite task of creating a Metal texture from a UIImage and instead create a
UIImage from a Metal texture?

Creating a UIImage from a Texture

The most efficient way to do this is with the image utilities in Core Graphics. First, a tem-
porary buffer is created, into which the pixel data of the Metal texture is read. This buffer
can be wrapped with a CGDataProviderRef, which is then used to create a CGImageRef.
We can then create a UIImage instance that wraps this CGImageRef.

The sample code implements a category on UIImage that does all of this, in a method
named +imageWithMTLTexture:. It is not included here for the sake of brevity, but it
makes for interesting reading.

It bears mentioning again that this is not the most efficient way to get the filtered image
on the screen. Creating an image from a texture uses extra memory, takes CPU time, and
requires the Core Animation compositor to copy the image data back into a texture for
display. All of this is costly and can be avoided in many cases. Fortunately, throughout
the course of this book, we’ve seen plenty of ways to use textures that don’t involve dis-
playing them with UIKit.

Driving Image Processing Asynchronously

Above, we mentioned that the filters dispatch their kernel functions synchronously. Since
image processing is computationally intensive, we need a way to do the work on a back-
ground thread in order to keep the user interface responsive.

Committing a command buffer to a command queue is inherently thread-safe, but con-
trolling other aspects of concurrency are the responsibility of the programmer.
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Fortunately, Grand Central Dispatch makes our work easy. Since we will only be in-
voking image filters in response to user actions on the main thread, we can use a pair of
dispatch_async calls to relocate our image processing work onto a background thread,
asynchronously updating the image view on the main thread when all of the filters are
done processing.

We will use a crude mutex in the form of an atomic 64-bit integer property on the view
controller that increments every time an update is requested. The value of this counter is
captured by the block that is enqueued. If another user event has not occurred by the time
the block executes on the background queue, the image filters are allowed to execute,
and the UI is refreshed.

- (void)updateImage
{

++self.jobIndex;
uint64_t currentJobIndex = self.jobIndex;

float blurRadius = self.blurRadiusSlider.value;
float saturation = self.saturationSlider.value;

dispatch_async(self.renderingQueue, ^{
if (currentJobIndex != self.jobIndex)

return;

self.blurFilter.radius = blurRadius;
self.desaturateFilter.saturationFactor = saturation;

id<MTLTexture> texture = self.blurFilter.texture;
UIImage *image = [UIImage imageWithMTLTexture:texture];

dispatch_async(dispatch_get_main_queue(), ^{
self.imageView.image = image;

});
});

}

The Sample Project

The sample code for this chapter is in the 14-ImageProcessing directory.

In this chapter, we took our next steps in parallel computation with Metal and saw a
couple of examples of image filters that can run efficiently on the GPU. You can now use
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the framework presented here to create your own effects and use the power of Metal to
run them efficiently on the GPU.
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